A few computations about the real cycle class map in low dimensions

Jens Hornbostel
{"title":"A few computations about the real cycle class map in low dimensions","authors":"Jens Hornbostel","doi":"arxiv-2405.14348","DOIUrl":null,"url":null,"abstract":"We investigate the surjectivity of the real cycle class map from\n$I$-cohomology to classical intergral cohomology for some real smooth\nvarieties, in particular surfaces. This might be considered as one of several\npossible incarnations of real integral Hodge theory.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the surjectivity of the real cycle class map from $I$-cohomology to classical intergral cohomology for some real smooth varieties, in particular surfaces. This might be considered as one of several possible incarnations of real integral Hodge theory.
关于低维度实周期类图的几点计算
我们研究了一些实光滑变量(尤其是曲面)的实循环类映射从 I$-同调到经典积分同调的可射性。这可以看作是实积分霍奇理论的几种可能的化身之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信