Quantum-Inspired Classical Algorithm for Graph Problems by Gaussian Boson Sampling

Changhun Oh, Bill Fefferman, Liang Jiang, Nicolás Quesada
{"title":"Quantum-Inspired Classical Algorithm for Graph Problems by Gaussian Boson Sampling","authors":"Changhun Oh, Bill Fefferman, Liang Jiang, Nicolás Quesada","doi":"10.1103/prxquantum.5.020341","DOIUrl":null,"url":null,"abstract":"We present a quantum-inspired classical algorithm that can be used for graph-theoretical problems, such as finding the densest <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> subgraph and finding the maximum weight clique, which are proposed as applications of a Gaussian boson sampler. The main observation from Gaussian boson samplers is that a given graph’s adjacency matrix to be encoded in a Gaussian boson sampler is non-negative and that computing the output probability of Gaussian boson sampling restricted to a non-negative adjacency matrix is thought to be strictly easier than general cases. We first provide how to program a given graph problem into our efficient classical algorithm. We then numerically compare the performance of ideal and lossy Gaussian boson samplers, our quantum-inspired classical sampler, and the uniform sampler for finding the densest <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> subgraph and finding the maximum weight clique and show that the advantage from Gaussian boson samplers is not significant in general. We finally discuss the potential advantage of a Gaussian boson sampler over the proposed quantum-inspired classical sampler.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a quantum-inspired classical algorithm that can be used for graph-theoretical problems, such as finding the densest k subgraph and finding the maximum weight clique, which are proposed as applications of a Gaussian boson sampler. The main observation from Gaussian boson samplers is that a given graph’s adjacency matrix to be encoded in a Gaussian boson sampler is non-negative and that computing the output probability of Gaussian boson sampling restricted to a non-negative adjacency matrix is thought to be strictly easier than general cases. We first provide how to program a given graph problem into our efficient classical algorithm. We then numerically compare the performance of ideal and lossy Gaussian boson samplers, our quantum-inspired classical sampler, and the uniform sampler for finding the densest k subgraph and finding the maximum weight clique and show that the advantage from Gaussian boson samplers is not significant in general. We finally discuss the potential advantage of a Gaussian boson sampler over the proposed quantum-inspired classical sampler.

Abstract Image

通过高斯玻色子采样解决图问题的量子启发经典算法
我们提出了一种量子启发的经典算法,可用于图论问题,如寻找最密集的 k 个子图和寻找最大权重簇,这些都是高斯玻色子采样器的应用。从高斯玻色子采样器中观察到的主要现象是,高斯玻色子采样器要编码的给定图的邻接矩阵是非负的,而且计算限制在非负邻接矩阵中的高斯玻色子采样的输出概率被认为严格来说比一般情况更容易。我们首先介绍了如何将给定的图问题编入我们的高效经典算法。然后,我们在数值上比较了理想高斯玻色子采样器和有损高斯玻色子采样器、我们的量子启发经典采样器以及均匀采样器在寻找最密集 k 子图和寻找最大权重簇方面的性能,结果表明高斯玻色子采样器的优势在一般情况下并不明显。最后,我们讨论了高斯玻色子采样器相对于量子启发经典采样器的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信