Native Two-Qubit Gates in Fixed-Coupling, Fixed-Frequency Transmons Beyond Cross-Resonance Interaction

Ken Xuan Wei, Isaac Lauer, Emily Pritchett, William Shanks, David C. McKay, Ali Javadi-Abhari
{"title":"Native Two-Qubit Gates in Fixed-Coupling, Fixed-Frequency Transmons Beyond Cross-Resonance Interaction","authors":"Ken Xuan Wei, Isaac Lauer, Emily Pritchett, William Shanks, David C. McKay, Ali Javadi-Abhari","doi":"10.1103/prxquantum.5.020338","DOIUrl":null,"url":null,"abstract":"Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor’s frequency to achieve high-fidelity, universal controlled-<span>not</span> (<span>cnot</span>) gates. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to <span>cnot</span> gates. In particular, we implement and benchmark native <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math><span>swap</span>, <span>swap</span>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mi>i</mi><mrow><mstyle mathsize=\"0.85em\"><mi>SWAP</mi></mstyle></mrow></msqrt></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math><span>swap</span> gates; in fact, any <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>SU</mi><mo stretchy=\"false\">(</mo><mn>4</mn><mo stretchy=\"false\">)</mo></math> unitary can be achieved using these techniques. Furthermore, we apply these techniques for an efficient construction of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show that these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor’s frequency to achieve high-fidelity, universal controlled-not (cnot) gates. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to cnot gates. In particular, we implement and benchmark native iswap, swap, iSWAP, and bswap gates; in fact, any SU(4) unitary can be achieved using these techniques. Furthermore, we apply these techniques for an efficient construction of the B gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show that these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit.

Abstract Image

超越交叉共振相互作用的固定耦合、固定频率跨子中的原生双丘比特门
固定频率超导量子比特作为稳定和可扩展的量子计算平台取得了显著成功。交叉共振门一直是固定耦合、固定频率超导处理器的主力,它利用驱动一个量子比特与相邻频率共振产生的纠缠来实现高保真、通用的受控不(cnot)门。在这里,我们利用共振和非共振微波驱动超越了交叉共振,实现了不等同于 cnot 门的本机有趣的双量子比特门。特别是,我们实现了本机等价交换门、交换门、iSWAP 门和 bswap 门,并对其进行了基准测试;事实上,使用这些技术可以实现任何 SU(4) 单元。此外,我们还将这些技术应用于 B 门的高效构建:一个完美的纠缠器,只需两次应用就能实现任何双量子比特门。我们的研究表明,这些原生双量子比特门优于交叉共振门。我们阐明了驱动每个双量子比特门所需的共振条件,并提供了一种在 Qiskit 中实现它们的新颖帧跟踪技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信