An Experimental Assessment of Using Different Sizes of Immersed Heating Surfaces on Heat Transfer Coefficient in Gas-Solid Fluidized Bed Reactor

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC
Jamal M. Ali, Abbas J. Sultan, Zahraa W. Hasan, Nabil Majd Alawi
{"title":"An Experimental Assessment of Using Different Sizes of Immersed Heating Surfaces on Heat Transfer Coefficient in Gas-Solid Fluidized Bed Reactor","authors":"Jamal M. Ali, Abbas J. Sultan, Zahraa W. Hasan, Nabil Majd Alawi","doi":"10.1134/s096554412401016x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This research is mainly concerned on studying the effects of heating surface area of immersing heater and particles size of bed packing on values of heat transfer coefficient (HTCs) under different air flow rates. Experiments were conducted in a gas-solid fluidized bed to study the steady-state heat transfer between gas and solid, along with the surface of the bed at various velocities, ranging from static bed to fluidized bed conditions (0.024– 0.387 m/s). The bed column was 172 mm in diameter and 1000 mm in height, attached with a horizontal heating tube of different diameters (19.5, 25.4, and 30 mm). Three different sizes of sand particle were employed (i.e. 200, 300 and 400 µm). HTCs are shown to rise with fluidizing air velocity while exhibiting a reverse association with particle size. The influence of heating tube diameter on HTC has been examined with remarkable fluctuations revealing the bed’s hydrodynamic characteristics.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"22 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s096554412401016x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research is mainly concerned on studying the effects of heating surface area of immersing heater and particles size of bed packing on values of heat transfer coefficient (HTCs) under different air flow rates. Experiments were conducted in a gas-solid fluidized bed to study the steady-state heat transfer between gas and solid, along with the surface of the bed at various velocities, ranging from static bed to fluidized bed conditions (0.024– 0.387 m/s). The bed column was 172 mm in diameter and 1000 mm in height, attached with a horizontal heating tube of different diameters (19.5, 25.4, and 30 mm). Three different sizes of sand particle were employed (i.e. 200, 300 and 400 µm). HTCs are shown to rise with fluidizing air velocity while exhibiting a reverse association with particle size. The influence of heating tube diameter on HTC has been examined with remarkable fluctuations revealing the bed’s hydrodynamic characteristics.

Abstract Image

使用不同尺寸的浸入式加热表面对气固流化床反应器传热系数的实验评估
摘要 本研究主要关注在不同空气流速下,浸入加热器的加热表面积和床层填料颗粒大小对传热系数(HTCs)值的影响。实验在气固流化床中进行,研究了从静态床到流化床条件下(0.024- 0.387 m/s)不同速度下气体和固体以及床表面之间的稳态传热。床柱直径为 172 毫米,高度为 1000 毫米,连接有不同直径(19.5、25.4 和 30 毫米)的水平加热管。采用了三种不同大小的沙粒(即 200、300 和 400 微米)。结果表明,HTC 随流化空气速度的增加而增加,同时与颗粒大小呈反向关系。研究了加热管直径对 HTC 的影响,其显著波动揭示了床层的流体动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信