Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O($N$)$^*$ and Ising$^*$ continuous transitions

Claudio Bonati, Andrea Pelissetto, Ettore Vicari
{"title":"Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O($N$)$^*$ and Ising$^*$ continuous transitions","authors":"Claudio Bonati, Andrea Pelissetto, Ettore Vicari","doi":"arxiv-2405.13485","DOIUrl":null,"url":null,"abstract":"We study the O($N$)$^*$ transitions that occur in the 3D $\\mathbb{Z}_2$-gauge\n$N$-vector model, and the analogous Ising$^*$ transitions occurring in the 3D\n$\\mathbb{Z}_2$-gauge Higgs model, corresponding to an $N$-vector model with\n$N=1$. At these transitions, gauge-invariant correlations behave as in the\nusual $N$-vector/Ising model. Instead, the nongauge invariant spin correlations\nare trivial and therefore the spin order parameter that characterizes the\nspontaneous breaking of the O($N$) symmetry in standard $N$-vector/Ising\nsystems is apparently absent. We define a novel gauge fixing procedure -- we\nname it stochastic gauge fixing -- that allows us to define a gauge-dependent\nvector field that orders at the transition and is therefore the appropriate\norder parameter for the O($N$) symmetry breaking. To substantiate this\napproach, we perform numerical simulations for $N=3$ and $N=1$. A finite-size\nscaling analysis of the numerical data allows us to confirm the general\nscenario: the gauge-fixed spin correlation functions behave as the\ncorresponding functions computed in the usual $N$-vector/Ising model. The\nemergence of a critical vector order parameter in the gauge model shows the\ncomplete equivalence of the O($N$)$^*$/Ising$^*$ and O($N$)/Ising universality\nclasses.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the O($N$)$^*$ transitions that occur in the 3D $\mathbb{Z}_2$-gauge $N$-vector model, and the analogous Ising$^*$ transitions occurring in the 3D $\mathbb{Z}_2$-gauge Higgs model, corresponding to an $N$-vector model with $N=1$. At these transitions, gauge-invariant correlations behave as in the usual $N$-vector/Ising model. Instead, the nongauge invariant spin correlations are trivial and therefore the spin order parameter that characterizes the spontaneous breaking of the O($N$) symmetry in standard $N$-vector/Ising systems is apparently absent. We define a novel gauge fixing procedure -- we name it stochastic gauge fixing -- that allows us to define a gauge-dependent vector field that orders at the transition and is therefore the appropriate order parameter for the O($N$) symmetry breaking. To substantiate this approach, we perform numerical simulations for $N=3$ and $N=1$. A finite-size scaling analysis of the numerical data allows us to confirm the general scenario: the gauge-fixed spin correlation functions behave as the corresponding functions computed in the usual $N$-vector/Ising model. The emergence of a critical vector order parameter in the gauge model shows the complete equivalence of the O($N$)$^*$/Ising$^*$ and O($N$)/Ising universality classes.
在O($N$)$^*$和伊辛$^*$连续跃迁中通过随机规固定揭示规依赖的临界阶参数相关性
我们研究了发生在三维$\mathbb{Z}_2$-gauge$N$-矢量模型中的O($N$)$^*$跃迁,以及发生在三维$\mathbb{Z}_2$-gauge希格斯模型中的类似伊辛$^*$跃迁,它对应于N=1$的$N$-矢量模型。在这些转换中,量规不变相关性的表现与通常的$N$-矢量/伊辛模型相同。相反,非规不变的自旋相关性是微不足道的,因此在标准的 $N$-矢量/伊兴系统中表征 O($N$)对称性自发破缺的自旋阶次参数显然不存在。我们定义了一种新的规整程序--我们把它命名为随机规整--它允许我们定义一个与规整相关的矢量场,这个矢量场在转换时有序,因此是O($N$)对称性破缺的适当阶次参数。为了证实这种方法,我们对 $N=3$ 和 $N=1$ 进行了数值模拟。通过对数值数据进行有限大小尺度分析,我们证实了一般情况:规固定自旋相关函数的表现与通常的 $N$ 向量/Ising 模型中计算的相应函数相同。量规模型中临界矢量阶参数的出现,表明了 O($N$)$^*$/Ising$^*$ 和 O($N$)/Ising 两类普遍性的完全等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信