Hot-carrier thermophotovoltaic systems

IF 2 4区 物理与天体物理 Q3 OPTICS
Kartika N Nimje, Maxime Giteau and Georgia T Papadakis
{"title":"Hot-carrier thermophotovoltaic systems","authors":"Kartika N Nimje, Maxime Giteau and Georgia T Papadakis","doi":"10.1088/2040-8986/ad4727","DOIUrl":null,"url":null,"abstract":"A thermophotovoltaic (TPV) energy converter harnesses thermal photons emitted by a hot body and converts them to electricity. When the radiative heat exchange between the emitter and photovoltaic cell is spectrally monochromatic, the TPV system can approach the Carnot thermodynamic efficiency limit. Nonetheless, this occurs at the expense of vanishing extracted electrical power density. Conversely, a spectrally broadband radiative heat exchange between the emitter and the cell yields maximal TPV power density at the expense of low efficiency. By leveraging hot-carriers as a means to mitigate thermalization losses within the cell, we demonstrate that one can alleviate this trade-off between power density and efficiency. Via detailed balance analysis, we show analytically that one can reach near-Carnot conversion efficiencies close to the maximum power point, which is unattainable with conventional TPV systems. We derive analytical relations between intrinsic device parameters and performance metrics, which serve as design rules for hot-carrier-based TPV systems.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad4727","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A thermophotovoltaic (TPV) energy converter harnesses thermal photons emitted by a hot body and converts them to electricity. When the radiative heat exchange between the emitter and photovoltaic cell is spectrally monochromatic, the TPV system can approach the Carnot thermodynamic efficiency limit. Nonetheless, this occurs at the expense of vanishing extracted electrical power density. Conversely, a spectrally broadband radiative heat exchange between the emitter and the cell yields maximal TPV power density at the expense of low efficiency. By leveraging hot-carriers as a means to mitigate thermalization losses within the cell, we demonstrate that one can alleviate this trade-off between power density and efficiency. Via detailed balance analysis, we show analytically that one can reach near-Carnot conversion efficiencies close to the maximum power point, which is unattainable with conventional TPV systems. We derive analytical relations between intrinsic device parameters and performance metrics, which serve as design rules for hot-carrier-based TPV systems.
热载体热光电系统
热光电(TPV)能量转换器利用热体发出的热光子,并将其转换为电能。当发射器和光伏电池之间的辐射热交换是单色光谱时,冠捷系统可以接近卡诺热力学效率极限。然而,这是以提取的电力密度消失为代价的。相反,发射器和电池之间的光谱宽带辐射热交换可以产生最大的冠捷功率密度,但效率较低。通过利用热载波减轻电池内部的热化损失,我们证明可以缓解功率密度和效率之间的权衡。通过详细的平衡分析,我们通过分析表明,我们可以达到接近最大功率点的卡诺转换效率,而这是传统热塑性光伏系统无法实现的。我们得出了器件固有参数与性能指标之间的分析关系,并将其作为基于热载流子的冠捷系统的设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
4.80%
发文量
237
审稿时长
1.9 months
期刊介绍: Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as: Nanophotonics and plasmonics Metamaterials and structured photonic materials Quantum photonics Biophotonics Light-matter interactions Nonlinear and ultrafast optics Propagation, diffraction and scattering Optical communication Integrated optics Photovoltaics and energy harvesting We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信