Mukai models and Borcherds products

IF 1.7 1区 数学 Q1 MATHEMATICS
Shouhei Ma
{"title":"Mukai models and Borcherds products","authors":"Shouhei Ma","doi":"10.1353/ajm.2024.a928323","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>Let ${\\Fgn}$ be the moduli space of $n$-pointed $K3$ surfaces of genus $g$ with at worst rational double points. We establish an isomorphism between the ring of pluricanonical forms on ${\\Fgn}$ and the ring of certain orthogonal modular forms, and give applications to the birational type of ${\\Fgn}$. We prove that the Kodaira dimension of ${\\Fgn}$ stabilizes to $19$ when $n$ is sufficiently large. Then we use explicit Borcherds products to find a lower bound of $n$ where ${\\Fgn}$ has nonnegative Kodaira dimension, and compare this with an upper bound where ${\\Fgn}$ is unirational or uniruled using Mukai models of $K3$ surfaces in $g\\leq 20$. This reveals the exact transition point of Kodaira dimension in some~$g$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a928323","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

Let ${\Fgn}$ be the moduli space of $n$-pointed $K3$ surfaces of genus $g$ with at worst rational double points. We establish an isomorphism between the ring of pluricanonical forms on ${\Fgn}$ and the ring of certain orthogonal modular forms, and give applications to the birational type of ${\Fgn}$. We prove that the Kodaira dimension of ${\Fgn}$ stabilizes to $19$ when $n$ is sufficiently large. Then we use explicit Borcherds products to find a lower bound of $n$ where ${\Fgn}$ has nonnegative Kodaira dimension, and compare this with an upper bound where ${\Fgn}$ is unirational or uniruled using Mukai models of $K3$ surfaces in $g\leq 20$. This reveals the exact transition point of Kodaira dimension in some~$g$.

向井模型和 Borcherds 产品
摘要:设${\Fgn}$为属$g$的$n$点$K3$曲面的模空间,且最差为有理双点。我们在 ${\Fgn}$ 上的复数形式环与某些正交模形式环之间建立了同构关系,并给出了在 ${\Fgn}$ 的二重类型上的应用。我们证明了当 $n$ 足够大时,${\Fgn}$ 的柯达伊拉维度会稳定在 $19$。然后,我们使用显式博彻德斯乘积找到了 ${\Fgn}$ 具有非负柯达伊拉维度的 $n$ 的下限,并使用 $g\leq 20$ 中 $K3$ 曲面的 Mukai 模型,将其与 ${\Fgn}$ 是非irational 或非iruled 的上限进行比较。这就揭示了在某些~$g$中的柯泰拉维度的精确转换点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信