Stabilizability for Quasilinear Klein–Gordon–Schrödinger System with Variable Coefficients

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Weijia Li, Yuqi Shangguan, Weiping Yan
{"title":"Stabilizability for Quasilinear Klein–Gordon–Schrödinger System with Variable Coefficients","authors":"Weijia Li, Yuqi Shangguan, Weiping Yan","doi":"10.1007/s10957-024-02445-y","DOIUrl":null,"url":null,"abstract":"<p>This paper concerns with the stabilizability for a quasilinear Klein–Gordon–Schrödinger system with variable coefficients in dimensionless form. The stabilizability of quaslinear Klein–Gordon-Wave system with the Kelvin–Voigt damping has been considered by Liu–Yan–Zhang (SIAM J Control Optim 61:1651–1678, 2023). Our main contribution is to find a suitable linear feedback control law such that the quasilinear Klein–Gordon–Schrödinger system is exponentially stable under certain smallness conditions.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"54 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02445-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns with the stabilizability for a quasilinear Klein–Gordon–Schrödinger system with variable coefficients in dimensionless form. The stabilizability of quaslinear Klein–Gordon-Wave system with the Kelvin–Voigt damping has been considered by Liu–Yan–Zhang (SIAM J Control Optim 61:1651–1678, 2023). Our main contribution is to find a suitable linear feedback control law such that the quasilinear Klein–Gordon–Schrödinger system is exponentially stable under certain smallness conditions.

具有可变系数的准线性克莱因-戈登-薛定谔系统的稳定性
本文涉及无量纲形式的变系数准线性克莱因-哥顿-薛定谔系统的可稳定问题。Liu-Yan-Zhang (SIAM J Control Optim 61:1651-1678, 2023)考虑了具有 Kelvin-Voigt 阻尼的准线性 Klein-Gordon-Wave 系统的稳定性。我们的主要贡献是找到一个合适的线性反馈控制律,使准线性克莱因-哥顿-薛定谔系统在一定的小性条件下指数稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信