{"title":"Étale cohomology of algebraizable rigid analytic varieties via nearby cycles over general bases","authors":"Hiroki Kato","doi":"10.1007/s00229-024-01564-0","DOIUrl":null,"url":null,"abstract":"<p>We prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension <span>\\(\\le 1\\)</span>, the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"41 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01564-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a finiteness theorem and a comparison theorem in the theory of étale cohomology of rigid analytic varieties. By a result of Huber, for a quasi-compact separated morphism of rigid analytic varieties with target being of dimension \(\le 1\), the compactly supported higher direct image preserves quasi-constructibility. Though the analogous statement for morphisms with higher dimensional target fails in general, we prove that, in the algebraizable case, it holds after replacing the target with a modification. We deduce it from a known finiteness result in the theory of nearby cycles over general bases and a new comparison result, which gives an identification of the compactly supported higher direct image sheaves, up to modification of the target, in terms of nearby cycles over general bases.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.