FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models

Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, Christina Dan Wang
{"title":"FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models","authors":"Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou, Mao Guan, Runjia Zhang, Christina Dan Wang","doi":"arxiv-2405.14767","DOIUrl":null,"url":null,"abstract":"As financial institutions and professionals increasingly incorporate Large\nLanguage Models (LLMs) into their workflows, substantial barriers, including\nproprietary data and specialized knowledge, persist between the finance sector\nand the AI community. These challenges impede the AI community's ability to\nenhance financial tasks effectively. Acknowledging financial analysis's\ncritical role, we aim to devise financial-specialized LLM-based toolchains and\ndemocratize access to them through open-source initiatives, promoting wider AI\nadoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform\nsupporting multiple financially specialized AI agents, each powered by LLM.\nSpecifically, the platform consists of four major layers: 1) the Financial AI\nAgents layer that formulates Financial Chain-of-Thought (CoT) by breaking\nsophisticated financial problems down into logical sequences; 2) the Financial\nLLM Algorithms layer dynamically configures appropriate model application\nstrategies for specific tasks; 3) the LLMOps and DataOps layer produces\naccurate models by applying training/fine-tuning techniques and using\ntask-relevant data; 4) the Multi-source LLM Foundation Models layer that\nintegrates various LLMs and enables the above layers to access them directly.\nFinally, FinRobot provides hands-on for both professional-grade analysts and\nlaypersons to utilize powerful AI techniques for advanced financial analysis.\nWe open-source FinRobot at\n\\url{https://github.com/AI4Finance-Foundation/FinRobot}.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at \url{https://github.com/AI4Finance-Foundation/FinRobot}.
FinRobot:使用大型语言模型的金融应用开源人工智能代理平台
随着金融机构和专业人士越来越多地将大型语言模型(LLM)纳入其工作流程,金融部门与人工智能界之间仍然存在着巨大的障碍,包括专有数据和专业知识。这些挑战阻碍了人工智能界有效提升金融任务的能力。考虑到金融分析的关键作用,我们旨在设计基于 LLM 的金融专业工具链,并通过开源计划使获取这些工具链的途径民主化,从而促进人工智能在金融决策中的广泛应用。在本文中,我们将介绍一种新型开源人工智能代理平台 FinRobot,该平台支持多个金融专业人工智能代理,每个代理都由 LLM 驱动。具体来说,该平台由四个主要层组成:1)金融人工智能代理层(Financial AIAgents layer),通过将复杂的金融问题分解为逻辑序列来制定金融思维链(Financial Chain-of-Thought, CoT);2)金融LLM算法层(FinancialLLM Algorithms layer),为特定任务动态配置适当的模型应用策略;3)LLMOps和DataOps层(LLMOps and DataOps layer),通过应用训练/微调技术和使用任务相关数据来生成精确的模型;4)多源LLM基础模型层(Multi-source LLM Foundation Models layer),整合各种LLM,使上述各层能够直接访问它们。最后,FinRobot 为专业级分析师和普通人提供了动手实践的机会,使他们能够利用强大的人工智能技术进行高级金融分析。我们将 FinRobot 开源于 (url{https://github.com/AI4Finance-Foundation/FinRobot})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信