Convergence Rates and Fluctuations for the Stokes–Brinkman Equations as Homogenization Limit in Perforated Domains

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Richard M. Höfer, Jonas Jansen
{"title":"Convergence Rates and Fluctuations for the Stokes–Brinkman Equations as Homogenization Limit in Perforated Domains","authors":"Richard M. Höfer,&nbsp;Jonas Jansen","doi":"10.1007/s00205-024-01993-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the homogenization of the Dirichlet problem for the Stokes equations in <span>\\(\\mathbb {R}^3\\)</span> perforated by <i>m</i> spherical particles. We assume the positions and velocities of the particles to be identically and independently distributed random variables. In the critical regime, when the radii of the particles are of order <span>\\(m^{-1}\\)</span>, the homogenization limit <i>u</i> is given as the solution to the Brinkman equations. We provide optimal rates for the convergence <span>\\(u_m \\rightarrow u\\)</span> in <span>\\(L^2\\)</span>, namely <span>\\(m^{-\\beta }\\)</span> for all <span>\\(\\beta &lt; 1/2\\)</span>. Moreover, we consider the fluctuations. In the central limit scaling, we show that these converge to a Gaussian field, locally in <span>\\(L^2(\\mathbb {R}^3)\\)</span>, with an explicit covariance. Our analysis is based on explicit approximations for the solutions <span>\\(u_m\\)</span> in terms of <i>u</i> as well as the particle positions and their velocities. These are shown to be accurate in <span>\\(\\dot{H}^1(\\mathbb {R}^3)\\)</span> to order <span>\\(m^{-\\beta }\\)</span> for all <span>\\(\\beta &lt; 1\\)</span>. Our results also apply to the analogous problem regarding the homogenization of the Poisson equations.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01993-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01993-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the homogenization of the Dirichlet problem for the Stokes equations in \(\mathbb {R}^3\) perforated by m spherical particles. We assume the positions and velocities of the particles to be identically and independently distributed random variables. In the critical regime, when the radii of the particles are of order \(m^{-1}\), the homogenization limit u is given as the solution to the Brinkman equations. We provide optimal rates for the convergence \(u_m \rightarrow u\) in \(L^2\), namely \(m^{-\beta }\) for all \(\beta < 1/2\). Moreover, we consider the fluctuations. In the central limit scaling, we show that these converge to a Gaussian field, locally in \(L^2(\mathbb {R}^3)\), with an explicit covariance. Our analysis is based on explicit approximations for the solutions \(u_m\) in terms of u as well as the particle positions and their velocities. These are shown to be accurate in \(\dot{H}^1(\mathbb {R}^3)\) to order \(m^{-\beta }\) for all \(\beta < 1\). Our results also apply to the analogous problem regarding the homogenization of the Poisson equations.

作为穿孔域均质化极限的斯托克斯-布林克曼方程的收敛速率和波动
我们研究了在 m 个球形粒子穿孔的 \(\mathbb {R}^3\) 中斯托克斯方程的 Dirichlet 问题的同质化。我们假定粒子的位置和速度是独立的同分布随机变量。在临界状态下,当粒子的半径为 \(m^{-1}\) 阶时,均质化极限 u 即为布林克曼方程的解。我们提供了在\(L^2\)中收敛(u_m \rightarrow u\) 的最佳速率,即对于所有\(\beta < 1/2\) 的\(m^{-\beta }\) 。此外,我们还考虑了波动。在中心极限缩放中,我们证明这些波动会收敛到一个高斯场,局部在 \(L^2(\mathbb {R}^3)\) 中,具有明确的协方差。我们的分析基于以 u 以及粒子位置和速度为条件的解决方案 \(u_m\)的显式近似。结果表明,对于所有的\(\beta < 1\) ,这些近似值在\(\dot{H}^1(\mathbb {R}^3)\)到阶\(m^{-\beta }\) 中都是精确的。我们的结果也适用于有关泊松方程同质化的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信