From Fourier to Neural ODEs: Flow matching for modeling complex systems

Xin Li, Jingdong Zhang, Qunxi Zhu, Chengli Zhao, Xue Zhang, Xiaojun Duan, Wei Lin
{"title":"From Fourier to Neural ODEs: Flow matching for modeling complex systems","authors":"Xin Li, Jingdong Zhang, Qunxi Zhu, Chengli Zhao, Xue Zhang, Xiaojun Duan, Wei Lin","doi":"arxiv-2405.11542","DOIUrl":null,"url":null,"abstract":"Modeling complex systems using standard neural ordinary differential\nequations (NODEs) often faces some essential challenges, including high\ncomputational costs and susceptibility to local optima. To address these\nchallenges, we propose a simulation-free framework, called Fourier NODEs\n(FNODEs), that effectively trains NODEs by directly matching the target vector\nfield based on Fourier analysis. Specifically, we employ the Fourier analysis\nto estimate temporal and potential high-order spatial gradients from noisy\nobservational data. We then incorporate the estimated spatial gradients as\nadditional inputs to a neural network. Furthermore, we utilize the estimated\ntemporal gradient as the optimization objective for the output of the neural\nnetwork. Later, the trained neural network generates more data points through\nan ODE solver without participating in the computational graph, facilitating\nmore accurate estimations of gradients based on Fourier analysis. These two\nsteps form a positive feedback loop, enabling accurate dynamics modeling in our\nframework. Consequently, our approach outperforms state-of-the-art methods in\nterms of training time, dynamics prediction, and robustness. Finally, we\ndemonstrate the superior performance of our framework using a number of\nrepresentative complex systems.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.11542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling complex systems using standard neural ordinary differential equations (NODEs) often faces some essential challenges, including high computational costs and susceptibility to local optima. To address these challenges, we propose a simulation-free framework, called Fourier NODEs (FNODEs), that effectively trains NODEs by directly matching the target vector field based on Fourier analysis. Specifically, we employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data. We then incorporate the estimated spatial gradients as additional inputs to a neural network. Furthermore, we utilize the estimated temporal gradient as the optimization objective for the output of the neural network. Later, the trained neural network generates more data points through an ODE solver without participating in the computational graph, facilitating more accurate estimations of gradients based on Fourier analysis. These two steps form a positive feedback loop, enabling accurate dynamics modeling in our framework. Consequently, our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness. Finally, we demonstrate the superior performance of our framework using a number of representative complex systems.
从傅立叶到神经 ODE:复杂系统建模的流量匹配
使用标准神经常微分方程(NODEs)对复杂系统建模往往面临一些基本挑战,包括计算成本高和容易出现局部最优。为了应对这些挑战,我们提出了一种称为傅立叶 NODEs(FNODEs)的免仿真框架,该框架基于傅立叶分析直接匹配目标矢量场,从而有效地训练 NODEs。具体来说,我们利用傅立叶分析从噪声观测数据中估计时间梯度和潜在的高阶空间梯度。然后,我们将估计的空间梯度作为神经网络的附加输入。此外,我们还利用估计的时间梯度作为神经网络输出的优化目标。之后,训练有素的神经网络在不参与计算图的情况下,通过 ODE 求解器生成更多数据点,从而在傅立叶分析的基础上更准确地估计梯度。这两个步骤形成了一个正反馈循环,从而在我们的框架中实现了精确的动力学建模。因此,我们的方法在训练时间、动态预测和鲁棒性方面都优于最先进的方法。最后,我们使用一些具有代表性的复杂系统来证明我们框架的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信