A note on odd partition numbers

IF 0.5 4区 数学 Q3 MATHEMATICS
Michael Griffin, Ken Ono
{"title":"A note on odd partition numbers","authors":"Michael Griffin,&nbsp;Ken Ono","doi":"10.1007/s00013-024-01999-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ramanujan’s partition congruences modulo <span>\\(\\ell \\in \\{5, 7, 11\\}\\)</span> assert that </p><div><div><span>$$\\begin{aligned} p(\\ell n+\\delta _{\\ell })\\equiv 0\\pmod {\\ell }, \\end{aligned}$$</span></div></div><p>where <span>\\(0&lt;\\delta _{\\ell }&lt;\\ell \\)</span> satisfies <span>\\(24\\delta _{\\ell }\\equiv 1\\pmod {\\ell }.\\)</span> By proving Subbarao’s conjecture, Radu showed that there are no such congruences when it comes to parity. There are infinitely many odd (resp. even) partition numbers in every arithmetic progression. For primes <span>\\(\\ell \\ge 5,\\)</span> we give a new proof of the conclusion that there are infinitely many <i>m</i> for which <span>\\(p(\\ell m+\\delta _{\\ell })\\)</span> is odd. This proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular form congruences, which allows us to show that the smallest such <i>m</i> satisfies <span>\\(m&lt;(\\ell ^2-1)/24,\\)</span> representing a significant improvement to the previous bound.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01999-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01999-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ramanujan’s partition congruences modulo \(\ell \in \{5, 7, 11\}\) assert that

$$\begin{aligned} p(\ell n+\delta _{\ell })\equiv 0\pmod {\ell }, \end{aligned}$$

where \(0<\delta _{\ell }<\ell \) satisfies \(24\delta _{\ell }\equiv 1\pmod {\ell }.\) By proving Subbarao’s conjecture, Radu showed that there are no such congruences when it comes to parity. There are infinitely many odd (resp. even) partition numbers in every arithmetic progression. For primes \(\ell \ge 5,\) we give a new proof of the conclusion that there are infinitely many m for which \(p(\ell m+\delta _{\ell })\) is odd. This proof uses a generalization, due to the second author and Ramsey, of a result of Mazur in his classic paper on the Eisenstein ideal. We also refine a classical criterion of Sturm for modular form congruences, which allows us to show that the smallest such m satisfies \(m<(\ell ^2-1)/24,\) representing a significant improvement to the previous bound.

关于奇数分区号的说明
Ramanujan's partition congruences modulo\(\ell \in \{5, 7, 11\}\) assert that $$begin{aligned} p(\ell n+\delta _{\ell })equiv 0\pmod {\ell }, \end{aligned}$$where\(0<;\滿足(24/delta _{\ell }\equiv 1\pmod {\ell }.\通过证明苏巴老的猜想,拉杜证明了在奇偶性方面不存在这样的全等。在每个算术级数中都有无穷多个奇数(或偶数)分割数。对于素数 \(\ell \ge 5,\),我们给出了一个新的证明,即有无穷多个 m 的 \(p(\ell m+\delta _\{ell })\)是奇数。这个证明使用了第二作者和拉姆齐对马祖尔在他关于爱森斯坦理想的经典论文中的一个结果的概括。我们还完善了斯图姆(Sturm)关于模形式全等的经典判据,从而证明了最小的这样的 m 满足 \(m<(\ell ^2-1)/24,\) ,这是对之前界限的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信