Growth of bilinear maps II: bounds and orders

Pub Date : 2024-05-21 DOI:10.1007/s10801-024-01336-9
Vuong Bui
{"title":"Growth of bilinear maps II: bounds and orders","authors":"Vuong Bui","doi":"10.1007/s10801-024-01336-9","DOIUrl":null,"url":null,"abstract":"<p>A good range of problems on trees can be described by the following general setting: Given a bilinear map <span>\\(*:\\mathbb {R}^d\\times \\mathbb {R}^d\\rightarrow \\mathbb {R}^d\\)</span> and a vector <span>\\(s\\in \\mathbb {R}^d\\)</span>, we need to estimate the largest possible absolute value <i>g</i>(<i>n</i>) of an entry over all vectors obtained from applying <span>\\(n-1\\)</span> applications of <span>\\(*\\)</span> to <i>n</i> instances of <i>s</i>. When the coefficients of <span>\\(*\\)</span> are nonnegative and the entries of <i>s</i> are positive, the value <i>g</i>(<i>n</i>) is known to follow a growth rate <span>\\(\\lambda =\\lim _{n\\rightarrow \\infty } \\root n \\of {g(n)}\\)</span>. In this article, we prove that for such <span>\\(*\\)</span> and <i>s</i> there exist nonnegative numbers <span>\\(r,r'\\)</span> and positive numbers <span>\\(a,a'\\)</span> so that for every <i>n</i>, </p><span>$$\\begin{aligned} a n^{-r}\\lambda ^n\\le g(n)\\le a' n^{r'}\\lambda ^n. \\end{aligned}$$</span><p>While proving the upper bound, we actually also provide another approach in proving the limit <span>\\(\\lambda \\)</span> itself. The lower bound is proved by showing a certain form of submultiplicativity for <i>g</i>(<i>n</i>). Corollaries include a lower bound and an upper bound for <span>\\(\\lambda \\)</span>, which are followed by a good estimation of <span>\\(\\lambda \\)</span> when we have the value of <i>g</i>(<i>n</i>) for an <i>n</i> large enough.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01336-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A good range of problems on trees can be described by the following general setting: Given a bilinear map \(*:\mathbb {R}^d\times \mathbb {R}^d\rightarrow \mathbb {R}^d\) and a vector \(s\in \mathbb {R}^d\), we need to estimate the largest possible absolute value g(n) of an entry over all vectors obtained from applying \(n-1\) applications of \(*\) to n instances of s. When the coefficients of \(*\) are nonnegative and the entries of s are positive, the value g(n) is known to follow a growth rate \(\lambda =\lim _{n\rightarrow \infty } \root n \of {g(n)}\). In this article, we prove that for such \(*\) and s there exist nonnegative numbers \(r,r'\) and positive numbers \(a,a'\) so that for every n,

$$\begin{aligned} a n^{-r}\lambda ^n\le g(n)\le a' n^{r'}\lambda ^n. \end{aligned}$$

While proving the upper bound, we actually also provide another approach in proving the limit \(\lambda \) itself. The lower bound is proved by showing a certain form of submultiplicativity for g(n). Corollaries include a lower bound and an upper bound for \(\lambda \), which are followed by a good estimation of \(\lambda \) when we have the value of g(n) for an n large enough.

分享
查看原文
双线性映射的增长 II:边界和阶数
关于树的一系列问题都可以用下面的一般设置来描述:给定一个双线性映射(*:\mathbb {R}^d\times \mathbb {R}^d\rightarrow \mathbb {R}^d\)和一个向量(s在\mathbb {R}^d\中),我们需要估计在所有向量中,通过对s的n个实例应用\(*\)的\(n-1\)应用得到的条目的最大可能绝对值g(n)。当 \(*\) 的系数为非负并且 s 的条目为正时,g(n)的值已知会遵循一个增长率 \(\lambda =\lim _{n\rightarrow \infty })\根 n (of {g(n)})。在本文中,我们将证明对于这样的(*)和 s,存在非负数(r,r')和正数(a,a'),这样对于每一个 n,$$begin{aligned} a n^{-r}\lambda ^n\le g(n)\le a' n^{r'}\lambda ^n。\end{aligned}$$在证明上界的同时,我们实际上还提供了另一种方法来证明极限 \(\lambda \)本身。下界是通过证明 g(n) 的某种形式的次乘性来证明的。推论包括 \(\lambda \)的下界和上界,当我们得到足够大的n的g(n)值时,就可以很好地估计 \(\lambda \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信