Regressor-free Molecule Generation to Support Drug Response Prediction

Kun Li, Xiuwen Gong, Shirui Pan, Jia Wu, Bo Du, Wenbin Hu
{"title":"Regressor-free Molecule Generation to Support Drug Response Prediction","authors":"Kun Li, Xiuwen Gong, Shirui Pan, Jia Wu, Bo Du, Wenbin Hu","doi":"arxiv-2405.14536","DOIUrl":null,"url":null,"abstract":"Drug response prediction (DRP) is a crucial phase in drug discovery, and the\nmost important metric for its evaluation is the IC50 score. DRP results are\nheavily dependent on the quality of the generated molecules. Existing molecule\ngeneration methods typically employ classifier-based guidance, enabling\nsampling within the IC50 classification range. However, these methods fail to\nensure the sampling space range's effectiveness, generating numerous\nineffective molecules. Through experimental and theoretical study, we\nhypothesize that conditional generation based on the target IC50 score can\nobtain a more effective sampling space. As a result, we introduce\nregressor-free guidance molecule generation to ensure sampling within a more\neffective space and support DRP. Regressor-free guidance combines a diffusion\nmodel's score estimation with a regression controller model's gradient based on\nnumber labels. To effectively map regression labels between drugs and cell\nlines, we design a common-sense numerical knowledge graph that constrains the\norder of text representations. Experimental results on the real-world dataset\nfor the DRP task demonstrate our method's effectiveness in drug discovery. The\ncode is available at:https://anonymous.4open.science/r/RMCD-DBD1.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drug response prediction (DRP) is a crucial phase in drug discovery, and the most important metric for its evaluation is the IC50 score. DRP results are heavily dependent on the quality of the generated molecules. Existing molecule generation methods typically employ classifier-based guidance, enabling sampling within the IC50 classification range. However, these methods fail to ensure the sampling space range's effectiveness, generating numerous ineffective molecules. Through experimental and theoretical study, we hypothesize that conditional generation based on the target IC50 score can obtain a more effective sampling space. As a result, we introduce regressor-free guidance molecule generation to ensure sampling within a more effective space and support DRP. Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels. To effectively map regression labels between drugs and cell lines, we design a common-sense numerical knowledge graph that constrains the order of text representations. Experimental results on the real-world dataset for the DRP task demonstrate our method's effectiveness in drug discovery. The code is available at:https://anonymous.4open.science/r/RMCD-DBD1.
支持药物反应预测的无调节因子分子生成
药物反应预测(DRP)是药物发现的一个关键阶段,其最重要的评估指标是 IC50 分数。DRP 结果在很大程度上取决于生成分子的质量。现有的分子生成方法通常采用基于分类器的指导,在 IC50 分类范围内进行取样。然而,这些方法无法确保采样空间范围的有效性,从而生成了大量无效分子。通过实验和理论研究,我们假设基于目标 IC50 分数的条件生成可以获得更有效的采样空间。因此,我们引入了无抑制因子引导分子生成技术,以确保在更有效的空间内采样,并支持 DRP。无回归控制器导向结合了扩散模型的分数估计和回归控制器模型基于数字标签的梯度。为了有效映射药物和细胞系之间的回归标签,我们设计了一种常识性数字知识图谱,它限制了文本表示的顺序。在真实世界数据集上的 DRP 任务实验结果证明了我们的方法在药物发现中的有效性。代码见:https://anonymous.4open.science/r/RMCD-DBD1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信