F. C. Salgado, A. Kozan, D. Seipt, D. Hollatz, P. Hilz, M. Kaluza, A. Sävert, A. Seidel, D. Ullmann, Y. Zhao, M. Zepf
{"title":"All-optical source size and emittance measurements of laser-accelerated electron beams","authors":"F. C. Salgado, A. Kozan, D. Seipt, D. Hollatz, P. Hilz, M. Kaluza, A. Sävert, A. Seidel, D. Ullmann, Y. Zhao, M. Zepf","doi":"10.1103/physrevaccelbeams.27.052803","DOIUrl":null,"url":null,"abstract":"Novel schemes for generating ultralow emittance electron beams have been developed in past years and promise compact particle sources with excellent beam quality suitable for future high-energy physics experiments and free-electron lasers. Recent theoretical work has proposed a laser-based method capable of resolving emittances in the sub 0.1 mm mrad regime by modulating the electron phase space ponderomotively. Here we present the first experimental demonstration of this scheme using a laser wakefield accelerator. The observed emittance and source size are consistent with published values. We also show calculations demonstrating that tight bounds on the upper limit for emittance and source size can be derived from the “laser-grating” method even in the presence of low signal to noise and uncertainty in laser-grating parameters.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.052803","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Novel schemes for generating ultralow emittance electron beams have been developed in past years and promise compact particle sources with excellent beam quality suitable for future high-energy physics experiments and free-electron lasers. Recent theoretical work has proposed a laser-based method capable of resolving emittances in the sub 0.1 mm mrad regime by modulating the electron phase space ponderomotively. Here we present the first experimental demonstration of this scheme using a laser wakefield accelerator. The observed emittance and source size are consistent with published values. We also show calculations demonstrating that tight bounds on the upper limit for emittance and source size can be derived from the “laser-grating” method even in the presence of low signal to noise and uncertainty in laser-grating parameters.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.