VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling

Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, Stan Z. Li
{"title":"VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling","authors":"Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Jiangbin Zheng, Yufei Huang, Stan Z. Li","doi":"arxiv-2405.10812","DOIUrl":null,"url":null,"abstract":"Similar to natural language models, pre-trained genome language models are\nproposed to capture the underlying intricacies within genomes with unsupervised\nsequence modeling. They have become essential tools for researchers and\npractitioners in biology. However, the \\textit{hand-crafted} tokenization\npolicies used in these models may not encode the most discriminative patterns\nfrom the limited vocabulary of genomic data. In this paper, we introduce VQDNA,\na general-purpose framework that renovates genome tokenization from the\nperspective of genome vocabulary learning. By leveraging vector-quantized\ncodebook as \\textit{learnable} vocabulary, VQDNA can adaptively tokenize\ngenomes into \\textit{pattern-aware} embeddings in an end-to-end manner. To\nfurther push its limits, we propose Hierarchical Residual Quantization (HRQ),\nwhere varying scales of codebooks are designed in a hierarchy to enrich the\ngenome vocabulary in a coarse-to-fine manner. Extensive experiments on 32\ngenome datasets demonstrate VQDNA's superiority and favorable parameter\nefficiency compared to existing genome language models. Notably, empirical\nanalysis of SARS-CoV-2 mutations reveals the fine-grained pattern awareness and\nbiological significance of learned HRQ vocabulary, highlighting its untapped\npotential for broader applications in genomics.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Similar to natural language models, pre-trained genome language models are proposed to capture the underlying intricacies within genomes with unsupervised sequence modeling. They have become essential tools for researchers and practitioners in biology. However, the \textit{hand-crafted} tokenization policies used in these models may not encode the most discriminative patterns from the limited vocabulary of genomic data. In this paper, we introduce VQDNA, a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning. By leveraging vector-quantized codebook as \textit{learnable} vocabulary, VQDNA can adaptively tokenize genomes into \textit{pattern-aware} embeddings in an end-to-end manner. To further push its limits, we propose Hierarchical Residual Quantization (HRQ), where varying scales of codebooks are designed in a hierarchy to enrich the genome vocabulary in a coarse-to-fine manner. Extensive experiments on 32 genome datasets demonstrate VQDNA's superiority and favorable parameter efficiency compared to existing genome language models. Notably, empirical analysis of SARS-CoV-2 mutations reveals the fine-grained pattern awareness and biological significance of learned HRQ vocabulary, highlighting its untapped potential for broader applications in genomics.
VQDNA:为多物种基因组序列建模释放矢量量化的力量
与自然语言模型类似,预训练的基因组语言模型被提出来通过无监督序列建模捕捉基因组中潜在的复杂性。它们已成为生物学研究人员和从业人员的必备工具。然而,这些模型中使用的 "文本"{hand-crafted}标记化策略可能无法从有限的基因组数据词汇中编码出最具辨别力的模式。本文介绍的 VQDNA 是一个通用框架,它从基因组词汇学习的角度对基因组标记化进行了革新。通过利用向量量化码本作为(textit{learnable})词汇,VQDNA可以以端到端的方式自适应地将基因组标记化为(textit{pattern-aware})嵌入。为了进一步提升其极限,我们提出了分层残差量化(HRQ)技术,即通过分层设计不同规模的编码本,以从粗到细的方式丰富基因组词汇。在 32 个基因组数据集上进行的广泛实验证明,与现有的基因组语言模型相比,VQDNA 具有优越性和良好的参数效率。值得注意的是,对 SARS-CoV-2 突变的实证分析揭示了所学 HRQ 词汇的精细模式识别和生物学意义,凸显了它在基因组学更广泛应用中尚未开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信