Asymptotics of generalized Bessel functions and weight multiplicities via large deviations of radial Dunkl processes

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Jiaoyang Huang, Colin McSwiggen
{"title":"Asymptotics of generalized Bessel functions and weight multiplicities via large deviations of radial Dunkl processes","authors":"Jiaoyang Huang, Colin McSwiggen","doi":"10.1007/s00440-024-01282-4","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the asymptotic behavior of several central objects in Dunkl theory as the dimension of the underlying space grows large. Our starting point is the observation that a recent result from the random matrix theory literature implies a large deviations principle for the hydrodynamic limit of radial Dunkl processes. Using this fact, we prove a variational formula for the large-<i>N</i> asymptotics of generalized Bessel functions, as well as a large deviations principle for the more general family of radial Heckman–Opdam processes. As an application, we prove a theorem on the asymptotic behavior of weight multiplicities of irreducible representations of compact or complex simple Lie algebras in the limit of large rank. The theorems in this paper generalize several known results describing analogous asymptotics for Dyson Brownian motion, spherical matrix integrals, and Kostka numbers.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01282-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the asymptotic behavior of several central objects in Dunkl theory as the dimension of the underlying space grows large. Our starting point is the observation that a recent result from the random matrix theory literature implies a large deviations principle for the hydrodynamic limit of radial Dunkl processes. Using this fact, we prove a variational formula for the large-N asymptotics of generalized Bessel functions, as well as a large deviations principle for the more general family of radial Heckman–Opdam processes. As an application, we prove a theorem on the asymptotic behavior of weight multiplicities of irreducible representations of compact or complex simple Lie algebras in the limit of large rank. The theorems in this paper generalize several known results describing analogous asymptotics for Dyson Brownian motion, spherical matrix integrals, and Kostka numbers.

通过径向 Dunkl 过程的大偏差实现广义贝塞尔函数和权重乘数的渐近性
本文研究了当底层空间维度变大时,邓克尔理论中几个中心对象的渐近行为。我们的出发点是观察到随机矩阵理论文献中的一个最新结果隐含了径向邓克尔过程流体力学极限的大偏差原理。利用这一事实,我们证明了广义贝塞尔函数大 N 渐近线的变分公式,以及更一般的径向 Heckman-Opdam 过程族的大偏差原理。作为应用,我们证明了紧凑或复杂简单李代数不可还原表示的权乘在大秩极限的渐近行为定理。本文中的定理概括了描述戴森布朗运动、球形矩阵积分和科斯特卡数的类似渐近的几个已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信