Skew-symmetric schemes for stochastic differential equations with non-Lipschitz drift: an unadjusted Barker algorithm

Samuel Livingstone, Nikolas Nüsken, Giorgos Vasdekis, Rui-Yang Zhang
{"title":"Skew-symmetric schemes for stochastic differential equations with non-Lipschitz drift: an unadjusted Barker algorithm","authors":"Samuel Livingstone, Nikolas Nüsken, Giorgos Vasdekis, Rui-Yang Zhang","doi":"arxiv-2405.14373","DOIUrl":null,"url":null,"abstract":"We propose a new simple and explicit numerical scheme for time-homogeneous\nstochastic differential equations. The scheme is based on sampling increments\nat each time step from a skew-symmetric probability distribution, with the\nlevel of skewness determined by the drift and volatility of the underlying\nprocess. We show that as the step-size decreases the scheme converges weakly to\nthe diffusion of interest. We then consider the problem of simulating from the\nlimiting distribution of an ergodic diffusion process using the numerical\nscheme with a fixed step-size. We establish conditions under which the\nnumerical scheme converges to equilibrium at a geometric rate, and quantify the\nbias between the equilibrium distributions of the scheme and of the true\ndiffusion process. Notably, our results do not require a global Lipschitz\nassumption on the drift, in contrast to those required for the Euler--Maruyama\nscheme for long-time simulation at fixed step-sizes. Our weak convergence\nresult relies on an extension of the theory of Milstein \\& Tretyakov to\nstochastic differential equations with non-Lipschitz drift, which could also be\nof independent interest. We support our theoretical results with numerical\nsimulations.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new simple and explicit numerical scheme for time-homogeneous stochastic differential equations. The scheme is based on sampling increments at each time step from a skew-symmetric probability distribution, with the level of skewness determined by the drift and volatility of the underlying process. We show that as the step-size decreases the scheme converges weakly to the diffusion of interest. We then consider the problem of simulating from the limiting distribution of an ergodic diffusion process using the numerical scheme with a fixed step-size. We establish conditions under which the numerical scheme converges to equilibrium at a geometric rate, and quantify the bias between the equilibrium distributions of the scheme and of the true diffusion process. Notably, our results do not require a global Lipschitz assumption on the drift, in contrast to those required for the Euler--Maruyama scheme for long-time simulation at fixed step-sizes. Our weak convergence result relies on an extension of the theory of Milstein \& Tretyakov to stochastic differential equations with non-Lipschitz drift, which could also be of independent interest. We support our theoretical results with numerical simulations.
具有非 Lipschitz 漂移的随机微分方程的偏斜对称方案:一种未经调整的巴克算法
我们为时间同构随机微分方程提出了一种新的简单而明确的数值方案。该方案基于在每个时间步从偏斜对称概率分布中采样增量,偏斜程度由基本过程的漂移和波动决定。我们证明,随着步长的减小,该方案会弱收敛于感兴趣的扩散。然后,我们考虑使用固定步长的数值方案从遍历扩散过程的极限分布进行模拟的问题。我们确定了数值方案以几何速度收敛到均衡的条件,并量化了方案均衡分布与真实扩散过程均衡分布之间的偏差。值得注意的是,我们的结果不需要漂移的全局 Lipschitzassumption,这与在固定步长下进行长时间模拟的 Euler-Maruyamascheme 所需的条件截然不同。我们的弱收敛性结果依赖于 Milstein \& Tretyakov 理论对具有非 Lipschitz 漂移的随机微分方程的扩展,这也可能是我们感兴趣的问题。我们用数值模拟来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信