{"title":"Nonparametric Estimation for Independent and Identically Distributed Stochastic Differential Equations with Space-Time Dependent Coefficients","authors":"Fabienne Comte, Valentine Genon-Catalot","doi":"10.1137/23m1581662","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 377-410, June 2024. <br/> Abstract. We consider [math] independent and identically distributed one-dimensional inhomogeneous diffusion processes [math] with drift [math] and diffusion coefficient [math], where [math] and the functions [math] and [math] are known. Our concern is the nonparametric estimation of the [math]-dimensional unknown function [math] from the continuous observation of the sample paths [math] throughout a fixed time interval [math]. A collection of projection estimators belonging to a product of finite-dimensional subspaces of [math] is built. The [math]-risk is defined by the expectation of either an empirical norm or a deterministic norm fitted to the problem. Rates of convergence for large [math] are discussed. A data-driven choice of the dimensions of the projection spaces is proposed. The theoretical results are illustrated by numerical experiments on simulated data.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1581662","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 377-410, June 2024. Abstract. We consider [math] independent and identically distributed one-dimensional inhomogeneous diffusion processes [math] with drift [math] and diffusion coefficient [math], where [math] and the functions [math] and [math] are known. Our concern is the nonparametric estimation of the [math]-dimensional unknown function [math] from the continuous observation of the sample paths [math] throughout a fixed time interval [math]. A collection of projection estimators belonging to a product of finite-dimensional subspaces of [math] is built. The [math]-risk is defined by the expectation of either an empirical norm or a deterministic norm fitted to the problem. Rates of convergence for large [math] are discussed. A data-driven choice of the dimensions of the projection spaces is proposed. The theoretical results are illustrated by numerical experiments on simulated data.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.