On Edwards' Speculation and a New Variational Method for the Zeros of the $Z$-Function

Yochay Jerby
{"title":"On Edwards' Speculation and a New Variational Method for the Zeros of the $Z$-Function","authors":"Yochay Jerby","doi":"arxiv-2405.12657","DOIUrl":null,"url":null,"abstract":"In his foundational book, Edwards introduced a unique \"speculation\" regarding\nthe possible theoretical origins of the Riemann Hypothesis, based on the\nproperties of the Riemann-Siegel formula. Essentially Edwards asks whether one\ncan find a method to transition from zeros of $Z_0(t)=cos(\\theta(t))$, where\n$\\theta(t)$ is Riemann-Siegel theta function, to zeros of $Z(t)$, the Hardy\n$Z$-function. However, when applied directly to the classical Riemann-Siegel\nformula, it faces significant obstacles in forming a robust plausibility\nargument for the Riemann Hypothesis. In a recent work, we introduced an alternative to the Riemann-Siegel formula\nthat utilizes series acceleration techniques. In this paper, we explore\nEdwards' speculation through the lens of our accelerated approach, which avoids\nmany of the challenges encountered in the classical case. Our approach leads to\nthe description of a novel variational framework for relating zeros of $Z_0(t)$\nto zeros of $Z(t)$ through paths in a high-dimensional parameter space\n$\\mathcal{Z}_N$, recasting the RH as a modern non-linear optimization problem.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In his foundational book, Edwards introduced a unique "speculation" regarding the possible theoretical origins of the Riemann Hypothesis, based on the properties of the Riemann-Siegel formula. Essentially Edwards asks whether one can find a method to transition from zeros of $Z_0(t)=cos(\theta(t))$, where $\theta(t)$ is Riemann-Siegel theta function, to zeros of $Z(t)$, the Hardy $Z$-function. However, when applied directly to the classical Riemann-Siegel formula, it faces significant obstacles in forming a robust plausibility argument for the Riemann Hypothesis. In a recent work, we introduced an alternative to the Riemann-Siegel formula that utilizes series acceleration techniques. In this paper, we explore Edwards' speculation through the lens of our accelerated approach, which avoids many of the challenges encountered in the classical case. Our approach leads to the description of a novel variational framework for relating zeros of $Z_0(t)$ to zeros of $Z(t)$ through paths in a high-dimensional parameter space $\mathcal{Z}_N$, recasting the RH as a modern non-linear optimization problem.
论爱德华兹的推测和$Z$函数零点的新变量法
在他的奠基之作中,爱德华兹根据黎曼-西格尔公式的特性,就黎曼假说可能的理论起源提出了一种独特的 "推测"。爱德华兹基本上是在问,我们能否找到一种方法,从$Z_0(t)=cos(\theta(t))$(其中$\theta(t)$是黎曼-西格尔θ函数)的零点过渡到$Z(t)$(哈代$Z$函数)的零点。然而,当直接应用于经典黎曼-西格尔公式时,它在形成黎曼假说的稳健可信性论证方面面临着巨大障碍。在最近的一项研究中,我们利用数列加速技术提出了黎曼-西格尔公式的替代方案。在本文中,我们通过加速方法的视角来探讨爱德华兹的推测,这种方法避免了在经典案例中遇到的许多挑战。我们的方法导致描述了一个新颖的变分框架,通过高维参数空间$\mathcal{Z}_N$中的路径,将$Z_0(t)$的零点与$Z(t)$的零点联系起来,将RH重塑为一个现代非线性优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信