{"title":"A long sequence NOx emission prediction model for rotary kilns based on transformer","authors":"Youlin Guo, Zhizhong Mao","doi":"10.1016/j.chemolab.2024.105151","DOIUrl":null,"url":null,"abstract":"<div><p>Time-series prediction is of great practical value in industrial scenarios such as rotary kilns, especially for long sequence time-series prediction. Accurate long sequence NOx emission predictions help us monitor rotary kiln operations in advance to plan and control NOx emissions according to emission policies and production requirements. However, in actual industrial scenarios, the NOx emission pattern is dominated by long-term trends rather than simply repetitive patterns. Existing NOx prediction models are not effective in capturing long-term dependencies. Therefore, this paper proposes a novel model based on Transformer to solve this problem. First, we propose a novel series decomposition architecture based on LSTM and self-attention, which is embedded inside the Transformer. The architecture allows self-attention at the sub-series level and provides short-term trend and position information. In addition, the model designs a one-step inference structure to improve the error accumulation phenomenon under traditional inference methods for long sequence prediction and reduce the inference time. We conducted extensive experiments on two real-world datasets with different sampling intervals, which validated the model’s effectiveness. It achieves a relative improvement of 53.2% and 43.4% in prediction accuracy compared to popular NOx emission prediction methods.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105151"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000911","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-series prediction is of great practical value in industrial scenarios such as rotary kilns, especially for long sequence time-series prediction. Accurate long sequence NOx emission predictions help us monitor rotary kiln operations in advance to plan and control NOx emissions according to emission policies and production requirements. However, in actual industrial scenarios, the NOx emission pattern is dominated by long-term trends rather than simply repetitive patterns. Existing NOx prediction models are not effective in capturing long-term dependencies. Therefore, this paper proposes a novel model based on Transformer to solve this problem. First, we propose a novel series decomposition architecture based on LSTM and self-attention, which is embedded inside the Transformer. The architecture allows self-attention at the sub-series level and provides short-term trend and position information. In addition, the model designs a one-step inference structure to improve the error accumulation phenomenon under traditional inference methods for long sequence prediction and reduce the inference time. We conducted extensive experiments on two real-world datasets with different sampling intervals, which validated the model’s effectiveness. It achieves a relative improvement of 53.2% and 43.4% in prediction accuracy compared to popular NOx emission prediction methods.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.