Vibro-acoustic coupling analysis of dynamic performance of the double panel system with mechanical links

Yufei Zhang, Shuyu Lyu, Shenghai Wang, Haiquan Chen
{"title":"Vibro-acoustic coupling analysis of dynamic performance of the double panel system with mechanical links","authors":"Yufei Zhang, Shuyu Lyu, Shenghai Wang, Haiquan Chen","doi":"10.1177/16878132241252641","DOIUrl":null,"url":null,"abstract":"The theoretical prediction model for the dynamic performance of a double panel system that takes into account the effect of mechanical links is developed in this paper. The double panel system is established considering both the vibro-acoustic coupling and the effect of the mechanical links between two flexible panels. Firstly, the modal characteristics of the double panel system are analyzed and compared with the results calculated by the finite element method. The accuracy and efficiency of the proposed model have been validated. Subsequently, the forced response of the double panel system under different external excitations is studied. It is shown that the mechanical link resulted in less response level of the double panel system in in low frequency range due to the structural path in the energy transmission of the double panel system. Finally, the effect of the mechanical link parameters on the dynamic performance of the double panel system is discussed. The results reveal that the stiffness coefficients, location distributions, and number of mechanical links can significantly influence the dynamic behavior of the double panel system. Therefore, the theoretical model can be used in optimization techniques to improve the sound transmission characteristics of the double panel system.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":"236 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132241252641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The theoretical prediction model for the dynamic performance of a double panel system that takes into account the effect of mechanical links is developed in this paper. The double panel system is established considering both the vibro-acoustic coupling and the effect of the mechanical links between two flexible panels. Firstly, the modal characteristics of the double panel system are analyzed and compared with the results calculated by the finite element method. The accuracy and efficiency of the proposed model have been validated. Subsequently, the forced response of the double panel system under different external excitations is studied. It is shown that the mechanical link resulted in less response level of the double panel system in in low frequency range due to the structural path in the energy transmission of the double panel system. Finally, the effect of the mechanical link parameters on the dynamic performance of the double panel system is discussed. The results reveal that the stiffness coefficients, location distributions, and number of mechanical links can significantly influence the dynamic behavior of the double panel system. Therefore, the theoretical model can be used in optimization techniques to improve the sound transmission characteristics of the double panel system.
带机械连接的双面板系统动态性能的振动-声学耦合分析
本文建立了考虑到机械连接效应的双面板系统动态性能理论预测模型。在建立双面板系统时,既考虑了振动-声学耦合,也考虑了两块柔性面板之间的机械连接效应。首先,分析了双面板系统的模态特性,并将其与有限元法计算的结果进行了比较。验证了所提出模型的准确性和效率。随后,研究了双面板系统在不同外部激励下的受力响应。结果表明,由于双面板系统能量传输的结构路径,机械连接导致双面板系统在低频范围内的响应水平较低。最后,讨论了机械连接参数对双面板系统动态性能的影响。结果表明,刚度系数、位置分布和机械链接的数量会对双层板系统的动态行为产生重大影响。因此,该理论模型可用于优化技术,以改善双面板系统的声音传输特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信