Exploring End-to-End object detection with transformers versus YOLOv8 for enhanced citrus fruit detection within trees

Zineb Jrondi , Abdellatif Moussaid , Moulay Youssef Hadi
{"title":"Exploring End-to-End object detection with transformers versus YOLOv8 for enhanced citrus fruit detection within trees","authors":"Zineb Jrondi ,&nbsp;Abdellatif Moussaid ,&nbsp;Moulay Youssef Hadi","doi":"10.1016/j.sasc.2024.200103","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comparative analysis between two state-of-the-art object detection models, DETR and YOLOv8, focusing on their effectiveness in fruit detection for yield prediction in agriculture. The study begins with data acquisition, utilizing images and corresponding annotations to train and evaluate the models. Our approach employs a data-driven methodology, dividing the dataset into training and testing sets, with rigorous validation to ensure robustness.</p><p>For DETR, evaluation results demonstrate promising performance across various IoU thresholds, indicating its effectiveness in accurately localizing fruits within bounding boxes. Additionally, YOLOv8 exhibits substantial improvements in detection performance, achieving high precision and recall rates, particularly noteworthy for \"orange\" and \"sweet_orange\" classes. Notably, the model showcases commendable proficiency even in challenging scenarios.</p><p>In conclusion, both DETR and YOLOv8 offer valuable insights for precision farming, aiding farmers in yield prediction and harvest planning. While DETR demonstrates robustness and efficiency in fruit detection, YOLOv8 excels in high-precision detection, albeit with longer training times. These findings highlight the potential of advanced object detection models in revolutionizing agricultural practices, contributing to enhanced productivity and market equilibrium.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200103"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000322/pdfft?md5=aa9adbf84f87252f771d098b47384d4e&pid=1-s2.0-S2772941924000322-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparative analysis between two state-of-the-art object detection models, DETR and YOLOv8, focusing on their effectiveness in fruit detection for yield prediction in agriculture. The study begins with data acquisition, utilizing images and corresponding annotations to train and evaluate the models. Our approach employs a data-driven methodology, dividing the dataset into training and testing sets, with rigorous validation to ensure robustness.

For DETR, evaluation results demonstrate promising performance across various IoU thresholds, indicating its effectiveness in accurately localizing fruits within bounding boxes. Additionally, YOLOv8 exhibits substantial improvements in detection performance, achieving high precision and recall rates, particularly noteworthy for "orange" and "sweet_orange" classes. Notably, the model showcases commendable proficiency even in challenging scenarios.

In conclusion, both DETR and YOLOv8 offer valuable insights for precision farming, aiding farmers in yield prediction and harvest planning. While DETR demonstrates robustness and efficiency in fruit detection, YOLOv8 excels in high-precision detection, albeit with longer training times. These findings highlight the potential of advanced object detection models in revolutionizing agricultural practices, contributing to enhanced productivity and market equilibrium.

探索利用变换器与 YOLOv8 进行端到端对象检测,以增强树内柑橘类水果的检测能力
本文对 DETR 和 YOLOv8 这两种最先进的物体检测模型进行了比较分析,重点研究了它们在农业产量预测中检测水果的有效性。研究从数据采集开始,利用图像和相应的注释来训练和评估模型。我们的方法采用了数据驱动方法,将数据集分为训练集和测试集,并进行严格验证以确保稳健性。对于 DETR,评估结果表明其在各种 IoU 阈值下均表现出良好的性能,这表明它能有效地在边界框内准确定位水果。此外,YOLOv8 在检测性能方面也有很大改进,实现了较高的精确率和召回率,特别是在 "橙 "和 "甜橙 "类别中。总之,DETR 和 YOLOv8 都为精准农业提供了有价值的见解,帮助农民进行产量预测和收获规划。DETR 在水果检测方面表现出稳健性和高效性,而 YOLOv8 则在高精度检测方面表现出色,尽管训练时间较长。这些发现凸显了先进物体检测模型在革新农业实践、提高生产力和促进市场平衡方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信