Bo Fang , Zhaocheng Yu , Li-bo Zhang , Yue Teng , Junxin Chen
{"title":"K-B2S+: A one-dimensional CNN model for AF detection with short single-lead ECG waves from wearable devices","authors":"Bo Fang , Zhaocheng Yu , Li-bo Zhang , Yue Teng , Junxin Chen","doi":"10.1016/j.dcan.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual's daily behavior. As detecting cardiovascular diseases can dramatically reduce mortality, arrhythmia recognition using ECG signals has attracted much attention. In this paper, we propose a single-channel convolutional neural network to detect Atrial Fibrillation (AF) based on ECG signals collected by wearable devices. It contains 3 primary modules. All recordings are firstly uniformly sized, normalized, and Butterworth low-pass filtered for noise removal. Then the preprocessed ECG signals are fed into convolutional layers for feature extraction. In the classification module, the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction, and the fully connected layer provides probabilities. During the training process, the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss. Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset, demonstrating the superiority of the proposed method.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 3","pages":"Pages 613-621"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000634","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual's daily behavior. As detecting cardiovascular diseases can dramatically reduce mortality, arrhythmia recognition using ECG signals has attracted much attention. In this paper, we propose a single-channel convolutional neural network to detect Atrial Fibrillation (AF) based on ECG signals collected by wearable devices. It contains 3 primary modules. All recordings are firstly uniformly sized, normalized, and Butterworth low-pass filtered for noise removal. Then the preprocessed ECG signals are fed into convolutional layers for feature extraction. In the classification module, the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction, and the fully connected layer provides probabilities. During the training process, the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss. Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset, demonstrating the superiority of the proposed method.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.