Soliton solutions of the negative-order nonlinear Schrödinger equation

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
G. U. Urazboev, I. I. Baltaeva, A. K. Babadjanova
{"title":"Soliton solutions of the negative-order nonlinear Schrödinger equation","authors":"G. U. Urazboev,&nbsp;I. I. Baltaeva,&nbsp;A. K. Babadjanova","doi":"10.1134/S0040577924050052","DOIUrl":null,"url":null,"abstract":"<p> We discuss the integration of the Cauchy problem for the negative-order nonlinear Schrödinger equation in the class of rapidly decreasing functions via the inverse scattering problem method. In particular, we obtain the time dependence of scattering data of the Zakharov–Shabat system with the potential that is a solution of the considered problem. We give an explicit representation of the one-soliton solution of the negative-order nonlinear Schrödinger equation based on the obtained results. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924050052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the integration of the Cauchy problem for the negative-order nonlinear Schrödinger equation in the class of rapidly decreasing functions via the inverse scattering problem method. In particular, we obtain the time dependence of scattering data of the Zakharov–Shabat system with the potential that is a solution of the considered problem. We give an explicit representation of the one-soliton solution of the negative-order nonlinear Schrödinger equation based on the obtained results.

Abstract Image

负阶非线性薛定谔方程的孤子解
我们通过反散射问题方法讨论了快速递减函数类中负阶非线性薛定谔方程的考希问题积分。特别是,我们获得了扎哈罗夫-沙巴特系统的散射数据的时间依赖性,该系统的势是所考虑问题的解。根据所获得的结果,我们给出了负阶非线性薛定谔方程一孑子解的显式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信