A novel solid waste instance creation for an optimized capacitated vehicle routing model using discrete smell agent optimization algorithm

Ahmed T. Salawudeen , Olusesi A. Meadows , Basira Yahaya , Muhammed B. Mu'azu
{"title":"A novel solid waste instance creation for an optimized capacitated vehicle routing model using discrete smell agent optimization algorithm","authors":"Ahmed T. Salawudeen ,&nbsp;Olusesi A. Meadows ,&nbsp;Basira Yahaya ,&nbsp;Muhammed B. Mu'azu","doi":"10.1016/j.sasc.2024.200099","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an optimal vehicle routing model for an efficient waste collection process using the Ogun State Waste Management Agency (OGWAMA) as a case study. Just like in many cases, the current manual predetermined routing method used by OGWAMA is inefficient and contributes to excessive fuel usage. These challenges, in addition to the small instances reported in most literature, inspire this research to propose an improved routing scheme that takes into account real-time costs and eventually develops a novel instance based on OGWAMA's operation mode. The developed model was optimized using a new discrete smell agent optimization (SAO) algorithm and compared to firefly algorithm (FA) and particle swarm optimization (PSO). The SAO outperformed FA and PSO, achieving 3.92 % and 19.38 % improvements in service cost (SC) and 2.65 % and 14.96 % improvements in total travel distance (TTD), respectively. The convergence rates of the algorithms were also compared; using the Optimized Depot (OD) techniques and results shows the acceptability of the proposed approaches.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200099"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000280/pdfft?md5=e35990fab5ed2c77d123ec00d2e1f357&pid=1-s2.0-S2772941924000280-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an optimal vehicle routing model for an efficient waste collection process using the Ogun State Waste Management Agency (OGWAMA) as a case study. Just like in many cases, the current manual predetermined routing method used by OGWAMA is inefficient and contributes to excessive fuel usage. These challenges, in addition to the small instances reported in most literature, inspire this research to propose an improved routing scheme that takes into account real-time costs and eventually develops a novel instance based on OGWAMA's operation mode. The developed model was optimized using a new discrete smell agent optimization (SAO) algorithm and compared to firefly algorithm (FA) and particle swarm optimization (PSO). The SAO outperformed FA and PSO, achieving 3.92 % and 19.38 % improvements in service cost (SC) and 2.65 % and 14.96 % improvements in total travel distance (TTD), respectively. The convergence rates of the algorithms were also compared; using the Optimized Depot (OD) techniques and results shows the acceptability of the proposed approaches.

利用离散嗅觉代理优化算法为优化容量车辆路由模型创建新型固体废物实例
本文以奥贡州废物管理机构(OGWAMA)为案例,介绍了高效废物收集流程的最佳车辆路线模型。与许多情况一样,奥贡州废物管理机构目前使用的人工预定路线方法效率低下,导致燃料消耗过多。除了大多数文献中报道的小实例外,这些挑战也激发了本研究的灵感,即提出一种考虑到实时成本的改进路由方案,并最终开发出基于 OGWAMA 运行模式的新实例。使用新的离散嗅觉代理优化(SAO)算法对所开发的模型进行了优化,并与萤火虫算法(FA)和粒子群优化(PSO)进行了比较。SAO 的性能优于 FA 和 PSO,服务成本(SC)分别提高了 3.92 % 和 19.38 %,总行程距离(TTD)分别提高了 2.65 % 和 14.96 %。此外,还使用优化车厂 (OD) 技术对算法的收敛率进行了比较,结果表明建议的方法是可接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信