MS-GIFT: Multi-Sided Geometry-Independent Field ApproximaTion Approach for Isogeometric Analysis

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Meng-Yun Wang , Ye Ji , Lin Lan , Chun-Gang Zhu
{"title":"MS-GIFT: Multi-Sided Geometry-Independent Field ApproximaTion Approach for Isogeometric Analysis","authors":"Meng-Yun Wang ,&nbsp;Ye Ji ,&nbsp;Lin Lan ,&nbsp;Chun-Gang Zhu","doi":"10.1016/j.cad.2024.103731","DOIUrl":null,"url":null,"abstract":"<div><p>The Geometry-Independent Field approximaTion (GIFT) technique, an extension of isogeometric analysis (IGA), allows for separate spaces to parameterize the computational domain and approximate solution field. Based on the GIFT approach, this paper proposes a novel IGA methodology that incorporates toric surface patches for multi-sided geometry representation, while utilizing B-spline or truncated hierarchical B-spline (THB-spline) basis for analysis. By creating an appropriate bijection between the parametric domains of distinct bases for modeling and approximation, our method ensures smoothness within the computational domain and combines the compact support of B-splines or the local refinement potential of THB-splines, resulting in more efficient and precise solutions. To enhance the quality of parameterization and consequently boost the accuracy of downstream analysis, we suggest optimizing the composite toric parameterization. Numerical examples validate the effectiveness and superiority of our suggested approach.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000587","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Geometry-Independent Field approximaTion (GIFT) technique, an extension of isogeometric analysis (IGA), allows for separate spaces to parameterize the computational domain and approximate solution field. Based on the GIFT approach, this paper proposes a novel IGA methodology that incorporates toric surface patches for multi-sided geometry representation, while utilizing B-spline or truncated hierarchical B-spline (THB-spline) basis for analysis. By creating an appropriate bijection between the parametric domains of distinct bases for modeling and approximation, our method ensures smoothness within the computational domain and combines the compact support of B-splines or the local refinement potential of THB-splines, resulting in more efficient and precise solutions. To enhance the quality of parameterization and consequently boost the accuracy of downstream analysis, we suggest optimizing the composite toric parameterization. Numerical examples validate the effectiveness and superiority of our suggested approach.

Abstract Image

Abstract Image

MS-GIFT:等时几何分析的多面几何独立场逼近法
几何独立场近似(GIFT)技术是等几何分析(IGA)的扩展,它允许在不同空间对计算域和近似解场进行参数化。在 GIFT 方法的基础上,本文提出了一种新颖的 IGA 方法,该方法结合了用于多面几何表示的环形表面补丁,同时利用 B-样条或截断分层 B-样条(THB-样条)基础进行分析。通过在用于建模和逼近的不同基的参数域之间创建适当的偏射,我们的方法确保了计算域内的平滑性,并结合了 B 样条的紧凑支持或 THB 样条的局部细化潜力,从而获得了更高效、更精确的解决方案。为了提高参数化的质量,进而提高下游分析的精度,我们建议优化复合环形参数化。数值实例验证了我们建议的方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信