A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records

Janick Weberpals, Sudha Raman, Pamela A. Shaw, Hana Lee, Massimiliano Russo, Bradley G. Hammill, S. Toh, John G. Connolly, Kimberly Dandreo, Fang Tian, Wei Liu, Jie Li, José J. Hernández-Muñoz, Robert J. Glynn, R. Desai
{"title":"A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records","authors":"Janick Weberpals, Sudha Raman, Pamela A. Shaw, Hana Lee, Massimiliano Russo, Bradley G. Hammill, S. Toh, John G. Connolly, Kimberly Dandreo, Fang Tian, Wei Liu, Jie Li, José J. Hernández-Muñoz, Robert J. Glynn, R. Desai","doi":"10.2147/clep.s436131","DOIUrl":null,"url":null,"abstract":"Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods","PeriodicalId":503946,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/clep.s436131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods
描述和分析电子健康记录中部分观测到的混杂因素数据的原则性方法
目的:部分观测到的混杂因素数据给电子健康记录(EHR)的统计分析带来了挑战,而对潜在的潜在缺失机制缺乏系统的评估。我们旨在提供一种原则性方法,从经验上描述缺失数据的过程,并研究分析方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信