Jiedong Wei , Yijia Zhang , Xingwang Li , Mingyu Lu , Hongfei Lin
{"title":"Knowledge enhanced attention aggregation network for medicine recommendation","authors":"Jiedong Wei , Yijia Zhang , Xingwang Li , Mingyu Lu , Hongfei Lin","doi":"10.1016/j.compbiolchem.2024.108099","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of deep learning and the medical field has recently achieved great success, particularly in recommending medicine for patients. However, patients’ clinical records often contain repeated medical information that can significantly impact their health condition. Most existing methods for modeling longitudinal patient information overlook the impact of individual diagnoses and procedures on the patient’s health, resulting in insufficient patient representation and limited accuracy of medicine recommendations. Therefore, we propose a medicine recommendation model called KEAN, which is based on an attention aggregation network and enhanced graph convolution. Specifically, KEAN can aggregate individual diagnoses and procedures in patient visits to capture significant features that affect patients’ diseases. We further incorporate medicine knowledge from complex medicine combinations, reduce drug–drug interactions (DDIs), and recommend medicines that are beneficial to patients’ health. The experimental results on the MIMIC-III dataset demonstrate that our model outperforms existing advanced methods, which highlights the effectiveness of the proposed method.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124000872","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of deep learning and the medical field has recently achieved great success, particularly in recommending medicine for patients. However, patients’ clinical records often contain repeated medical information that can significantly impact their health condition. Most existing methods for modeling longitudinal patient information overlook the impact of individual diagnoses and procedures on the patient’s health, resulting in insufficient patient representation and limited accuracy of medicine recommendations. Therefore, we propose a medicine recommendation model called KEAN, which is based on an attention aggregation network and enhanced graph convolution. Specifically, KEAN can aggregate individual diagnoses and procedures in patient visits to capture significant features that affect patients’ diseases. We further incorporate medicine knowledge from complex medicine combinations, reduce drug–drug interactions (DDIs), and recommend medicines that are beneficial to patients’ health. The experimental results on the MIMIC-III dataset demonstrate that our model outperforms existing advanced methods, which highlights the effectiveness of the proposed method.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.