Dieynaba Ndiaye, Marie Perceau, Mylène Lorcin, Flavien Denis, Laurent Gaté
{"title":"Antifungal climbazole alters androgenic pathways in mammalian cells","authors":"Dieynaba Ndiaye, Marie Perceau, Mylène Lorcin, Flavien Denis, Laurent Gaté","doi":"10.1016/j.tiv.2024.105854","DOIUrl":null,"url":null,"abstract":"<div><p>Among antifungal agents used in pharmaceuticals and personal care products, the synthetic azole climbazole (CBZ; 1-(4-Chlorophenoxy)-1-(imidazol-1-yl)-3,3-dimethylbutan-2-one) acts on the fungus <em>Malassezia</em>. Despite concerns surrounding its effects on health, based on alterations to reproduction and steroidogenesis found in fish, little is known about its mechanism of action as an endocrine disrupting chemical (EDC) in mammalian cells.</p><p>In this study, using OECD test guidelines, we investigated the effects of CBZ (i) in H295R cells, on the production of estradiol and testosterone, as well as intermediate metabolites in steroidogenesis pathway, and (ii) in HeLa9903 and AR-EcoScreen cell lines, on the transactivation of estrogen and androgen receptors.</p><p>Our results are the first evidence in H295R cells, that CBZ treatment (from 0.3 μM) decreased secreted levels of testosterone and estradiol. This was associated with reduced 17α-hydroxypregnenolone and 17α-hydroxyprogesterone levels. The altered levels of these metabolites were associated with a decrease in cytochrome P450 17α-hydroxylase/17,20-lyase (Cyp17A1) activity without any effect on its protein level. CBZ was also found to exert antagonistic effects toward androgen and estrogen α receptors. These results give insights into the toxicological mechanism of action of CBZ. Many azoles share structural similarities; therefore, caution should be adopted due to their potential toxicity.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105854"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324000845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among antifungal agents used in pharmaceuticals and personal care products, the synthetic azole climbazole (CBZ; 1-(4-Chlorophenoxy)-1-(imidazol-1-yl)-3,3-dimethylbutan-2-one) acts on the fungus Malassezia. Despite concerns surrounding its effects on health, based on alterations to reproduction and steroidogenesis found in fish, little is known about its mechanism of action as an endocrine disrupting chemical (EDC) in mammalian cells.
In this study, using OECD test guidelines, we investigated the effects of CBZ (i) in H295R cells, on the production of estradiol and testosterone, as well as intermediate metabolites in steroidogenesis pathway, and (ii) in HeLa9903 and AR-EcoScreen cell lines, on the transactivation of estrogen and androgen receptors.
Our results are the first evidence in H295R cells, that CBZ treatment (from 0.3 μM) decreased secreted levels of testosterone and estradiol. This was associated with reduced 17α-hydroxypregnenolone and 17α-hydroxyprogesterone levels. The altered levels of these metabolites were associated with a decrease in cytochrome P450 17α-hydroxylase/17,20-lyase (Cyp17A1) activity without any effect on its protein level. CBZ was also found to exert antagonistic effects toward androgen and estrogen α receptors. These results give insights into the toxicological mechanism of action of CBZ. Many azoles share structural similarities; therefore, caution should be adopted due to their potential toxicity.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.