{"title":"A point-normal interpolatory subdivision scheme preserving conics","authors":"Niels Bügel , Lucia Romani , Jiří Kosinka","doi":"10.1016/j.cagd.2024.102347","DOIUrl":null,"url":null,"abstract":"<div><p>The use of subdivision schemes in applied and real-world contexts requires the development of conceptually simple algorithms that can be converted into fast and efficient implementation procedures. In the domain of interpolatory subdivision schemes, there is a demand for developing an algorithm capable of (i) reproducing all types of conic sections whenever the input data (in our case point-normal pairs) are arbitrarily sampled from them, (ii) generating a visually pleasing limit curve without creating unwanted oscillations, and (iii) having the potential to be naturally and easily extended to the bivariate case. In this paper we focus on the construction of an interpolatory subdivision scheme that meets all these conditions simultaneously. At the centre of our construction lies a conic fitting algorithm that requires as few as four point-normal pairs for finding new edge points (and associated normals) in a subdivision step. Several numerical results are included to showcase the validity of our algorithm.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102347"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624000815/pdfft?md5=73e6c19a1540d186507b4ba5fb902a3e&pid=1-s2.0-S0167839624000815-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The use of subdivision schemes in applied and real-world contexts requires the development of conceptually simple algorithms that can be converted into fast and efficient implementation procedures. In the domain of interpolatory subdivision schemes, there is a demand for developing an algorithm capable of (i) reproducing all types of conic sections whenever the input data (in our case point-normal pairs) are arbitrarily sampled from them, (ii) generating a visually pleasing limit curve without creating unwanted oscillations, and (iii) having the potential to be naturally and easily extended to the bivariate case. In this paper we focus on the construction of an interpolatory subdivision scheme that meets all these conditions simultaneously. At the centre of our construction lies a conic fitting algorithm that requires as few as four point-normal pairs for finding new edge points (and associated normals) in a subdivision step. Several numerical results are included to showcase the validity of our algorithm.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.