Identification of Yld2000–2d anisotropic yield function parameters from single hole expansion test using machine learning

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"Identification of Yld2000–2d anisotropic yield function parameters from single hole expansion test using machine learning","authors":"","doi":"10.1016/j.cirp.2024.04.026","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel machine learning approach for predicting the anisotropic parameters of the Yld2000–2d non-quadratic yield function using a hole expansion test. Heterogeneous stress-strain fields during the test substitute for multiple experiments required in the conventional parameter identification approach. An artificial neural network model for the parameter prediction is developed using a virtually generated training dataset composed of strains from hole expansion simulations, performed using randomly selected anisotropic parameters. The developed model predicts the Yld2000–2d parameters for AA6022-T4 based on the measured strain field from a hole expansion experiment, and the parameter results are evaluated by comparing anisotropy in uniaxial tension tests, the yield locus, and thinning variation in hole expansion test.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 233-236"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000349","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel machine learning approach for predicting the anisotropic parameters of the Yld2000–2d non-quadratic yield function using a hole expansion test. Heterogeneous stress-strain fields during the test substitute for multiple experiments required in the conventional parameter identification approach. An artificial neural network model for the parameter prediction is developed using a virtually generated training dataset composed of strains from hole expansion simulations, performed using randomly selected anisotropic parameters. The developed model predicts the Yld2000–2d parameters for AA6022-T4 based on the measured strain field from a hole expansion experiment, and the parameter results are evaluated by comparing anisotropy in uniaxial tension tests, the yield locus, and thinning variation in hole expansion test.

利用机器学习从单孔膨胀试验中识别 Yld2000-2d 各向异性屈服函数参数
本研究提出了一种新颖的机器学习方法,利用扩孔试验预测 Yld2000-2d 非二次屈服函数的各向异性参数。试验过程中的异质应力应变场替代了传统参数识别方法所需的多次试验。使用随机选择的各向异性参数,通过孔扩展模拟应变组成的虚拟生成训练数据集,开发了用于参数预测的人工神经网络模型。所开发的模型根据扩孔实验中测得的应变场预测了 AA6022-T4 的 Yld2000-2d 参数,并通过比较单轴拉伸试验中的各向异性、屈服点和扩孔试验中的减薄变化对参数结果进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信