Delineation of the effective viscosity controls of diluted polymer solutions at various flow regimes

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Sultan Dwier , Ali Garrouch , Haitham Lababidi
{"title":"Delineation of the effective viscosity controls of diluted polymer solutions at various flow regimes","authors":"Sultan Dwier ,&nbsp;Ali Garrouch ,&nbsp;Haitham Lababidi","doi":"10.1016/j.fluid.2024.114143","DOIUrl":null,"url":null,"abstract":"<div><p>Carreau's model is a well-established standard in the scientific community for estimating the viscosity of polymer solutions as a function of shear rate. It accurately predicts effective viscosity in power-law and Newtonian flow regimes, distinguished by distinct asymptotic values at extremely low and high shear rates. However, existing analytical models for determining Carreau's parameters (zero-shear-viscosity, <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>, power-law index, <span><math><mi>n</mi></math></span>, and relaxation-time constant, <span><math><mi>λ</mi></math></span>) have limitations. Typically expressed in terms of polymer solution concentration (<span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>), these models often overlook critical variables such as solvent salinity <span><math><mrow><mo>(</mo><msub><mi>C</mi><mi>NaCl</mi></msub><mo>)</mo></mrow></math></span>, hardness (<span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>), solution density (<span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>), and polymer molecular weight (<span><math><mi>M</mi></math></span>). Additionally, many of these models lack dimensional consistency.</p><p>This study introduces a robust scientific method for modeling Carreau's parameters, integrating dimensional analysis with non-linear regression to delineate the factors influencing these parameters. The analysis indicates that the power-law index is primarily influenced by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, and <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>. The zero-shear-viscosity <span><math><mrow><mo>(</mo><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup><mo>)</mo></mrow></math></span> is governed by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>M</mi></math></span>, <span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>, pressure (<span><math><mi>P</mi></math></span>), and <span><math><mi>n</mi></math></span>, while the time constant (<span><math><mi>λ</mi></math></span>) is mainly determined by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>n</mi></math></span>, and <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>. The derived empirical models demonstrate a direct dependence of zero-shear viscosity on <span><math><msqrt><mi>P</mi></msqrt></math></span>, <span><math><mrow><mroot><mi>M</mi><mn>3</mn></mroot><mo>,</mo><mspace></mspace><mroot><msub><mi>ρ</mi><mi>s</mi></msub><mn>6</mn></mroot></mrow></math></span>, and an exponential dependence on <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, aligning with experimental observations. Incorporating variables like solution density, molecular weight, and pressure was crucial for enhancing the precision of <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span> and <span><math><mi>λ</mi></math></span> predictions. These models, validated against rheological measurements of three dilute EOR polymer solutions (HPAM and AMPS-based) in various conditions, have shown superior precision and impartiality compared to prominent existing models, representing a significant advancement in the field.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"584 ","pages":"Article 114143"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carreau's model is a well-established standard in the scientific community for estimating the viscosity of polymer solutions as a function of shear rate. It accurately predicts effective viscosity in power-law and Newtonian flow regimes, distinguished by distinct asymptotic values at extremely low and high shear rates. However, existing analytical models for determining Carreau's parameters (zero-shear-viscosity, μp, power-law index, n, and relaxation-time constant, λ) have limitations. Typically expressed in terms of polymer solution concentration (Cp), these models often overlook critical variables such as solvent salinity (CNaCl), hardness (Cca++), solution density (ρs), and polymer molecular weight (M). Additionally, many of these models lack dimensional consistency.

This study introduces a robust scientific method for modeling Carreau's parameters, integrating dimensional analysis with non-linear regression to delineate the factors influencing these parameters. The analysis indicates that the power-law index is primarily influenced by Cp, CNaCl, and Cca++. The zero-shear-viscosity (μp) is governed by Cp, CNaCl, Cca++, M, ρs, pressure (P), and n, while the time constant (λ) is mainly determined by Cp, CNaCl, Cca++, n, and μp. The derived empirical models demonstrate a direct dependence of zero-shear viscosity on P, M3,ρs6, and an exponential dependence on Cp, aligning with experimental observations. Incorporating variables like solution density, molecular weight, and pressure was crucial for enhancing the precision of μp and λ predictions. These models, validated against rheological measurements of three dilute EOR polymer solutions (HPAM and AMPS-based) in various conditions, have shown superior precision and impartiality compared to prominent existing models, representing a significant advancement in the field.

不同流动状态下稀释聚合物溶液有效粘度控制的划分
Carreau 模型是科学界公认的估算聚合物溶液粘度与剪切速率函数关系的标准。它能准确预测幂律和牛顿流动状态下的有效粘度,在极低和极高剪切速率下具有明显的渐近值。然而,用于确定 Carreau 参数(零剪切粘度 μp∘、幂律指数 n 和松弛时间常数 λ)的现有分析模型存在局限性。这些模型通常以聚合物溶液浓度 (Cp) 表示,但往往忽略了一些关键变量,如溶剂盐度 (CNaCl)、硬度 (Cca++)、溶液密度 (ρs) 和聚合物分子量 (M)。此外,这些模型中的许多都缺乏尺寸一致性。本研究介绍了一种建立 Carreau 参数模型的可靠科学方法,将尺寸分析与非线性回归相结合,以确定影响这些参数的因素。分析表明,幂律指数主要受 Cp、CNaCl 和 Cca++ 的影响。零剪切粘度(μp∘)受 Cp、CNaCl、Cca++、M、ρs、压力 (P) 和 n 的影响,而时间常数(λ)主要由 Cp、CNaCl、Cca++、n 和 μp∘ 决定。推导出的经验模型表明,零剪切粘度与 P、M3、ρs6 直接相关,与 Cp 呈指数关系,与实验观察结果一致。纳入溶液密度、分子量和压力等变量对于提高 μp∘ 和 λ 预测的精度至关重要。这些模型根据三种稀释的 EOR 聚合物溶液(HPAM 和 AMPS 型)在不同条件下的流变测量结果进行了验证,与现有的杰出模型相比,显示出更高的精度和公正性,代表了该领域的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信