The spectral determinant for second-order elliptic operators on the real line

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Pedro Freitas, Jiří Lipovský
{"title":"The spectral determinant for second-order elliptic operators on the real line","authors":"Pedro Freitas,&nbsp;Jiří Lipovský","doi":"10.1007/s11005-024-01819-7","DOIUrl":null,"url":null,"abstract":"<div><p>We derive an expression for the spectral determinant of a second-order elliptic differential operator <span>\\( \\mathcal {T} \\)</span> defined on the whole real line, in terms of the Wronskians of two particular solutions of the equation <span>\\( \\mathcal {T} u=0\\)</span>. Examples of application of the resulting formula include the explicit calculation of the determinant of harmonic and anharmonic oscillators with an added bounded potential with compact support.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01819-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We derive an expression for the spectral determinant of a second-order elliptic differential operator \( \mathcal {T} \) defined on the whole real line, in terms of the Wronskians of two particular solutions of the equation \( \mathcal {T} u=0\). Examples of application of the resulting formula include the explicit calculation of the determinant of harmonic and anharmonic oscillators with an added bounded potential with compact support.

Abstract Image

实线上二阶椭圆算子的谱行列式
我们根据方程 \( \mathcal {T} u=0\) 两个特定解的弗伦斯基,推导出定义在整个实线上的二阶椭圆微分算子 \( \mathcal {T} \) 的谱行列式表达式。所得公式的应用实例包括明确计算带有紧凑支持的有界势的谐和振荡器和非谐和振荡器的行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信