Self-orthogonal and quantum codes over chain rings

Q3 Mathematics
Maryam Bajelan, Mina Moeini, Bahattin Yildiz
{"title":"Self-orthogonal and quantum codes over chain rings","authors":"Maryam Bajelan, Mina Moeini, Bahattin Yildiz","doi":"10.13069/jacodesmath.v11i2.304","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Gray images of codes over chain rings, leading to the derivation of infinite families of self-orthogonal linear codes over the residue field $\\mathbb{F}_q$. We determine the parameters of optimal self-orthogonal and divisible linear codes. Additionally, we study the Gray images of quasi-twisted codes, resulting in some self-orthogonal Griesmer quasi-cyclic codes. Finally, we employ the CSS construction to derive some quantum codes based on self-orthogonal linear codes.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.v11i2.304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the Gray images of codes over chain rings, leading to the derivation of infinite families of self-orthogonal linear codes over the residue field $\mathbb{F}_q$. We determine the parameters of optimal self-orthogonal and divisible linear codes. Additionally, we study the Gray images of quasi-twisted codes, resulting in some self-orthogonal Griesmer quasi-cyclic codes. Finally, we employ the CSS construction to derive some quantum codes based on self-orthogonal linear codes.
链环上的自正交码和量子码
在本文中,我们研究了链环上编码的格雷图像,从而推导出了残差域 $\mathbb{F}_q$ 上的无穷自正交线性编码系列。我们确定了最优自正交和可分线性编码的参数。此外,我们还研究了准扭曲码的格雷图像,从而得到了一些自正交格里斯梅尔准循环码。最后,我们利用 CSS 结构推导出一些基于自正交线性编码的量子编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信