Block-scale Oil Palm Yield Prediction Using Machine Learning Approaches Based on Landsat and MODIS Satellite Data

Yuhao Ang, Helmi Zulhaidi Mohd Shafri, Yang Ping Lee, Shahrul Azman Bakar, Haryati Abidin, Shaiful Jahari Hashim, Mohd Na’aim Samad, Nik Norasma Che’ya, Mohd Roshdi Hassan, Hwee San Lim, Rosni Abdullah, Yusri Yusup, Syahidah Akmal Muhammad, Teh Sin Yin, Mohamed Barakat A. Gibril
{"title":"Block-scale Oil Palm Yield Prediction Using Machine Learning Approaches Based on Landsat and MODIS Satellite Data","authors":"Yuhao Ang, Helmi Zulhaidi Mohd Shafri, Yang Ping Lee, Shahrul Azman Bakar, Haryati Abidin, Shaiful Jahari Hashim, Mohd Na’aim Samad, Nik Norasma Che’ya, Mohd Roshdi Hassan, Hwee San Lim, Rosni Abdullah, Yusri Yusup, Syahidah Akmal Muhammad, Teh Sin Yin, Mohamed Barakat A. Gibril","doi":"10.37934/araset.45.1.90107","DOIUrl":null,"url":null,"abstract":"Due to environmental threats and weather uncertainty concerns, oil palm yield prediction is crucial for sustaining crop production. This can be achieved through machine learning and utilising remotely sensed data to predict crop yield. However, the comparative studies on remotely sensed data in adopting the machine learning models are still limited due to the data accessibility. Therefore, we compare and evaluate the prediction accuracy between different satellites, namely MODIS and Landsat-7, using machine learning algorithms and the topology of deep neural networks. Random forest and stacking outperformed linear regression, ridge regression, and lasso regression for both Landsat-7 NDVI (R2= 0.78–0.80; RMSE=1.00- 1.26 tonnes per hectare; MAE=0.77- 0.79 tonnes per hectares; MAPE=0.03-0.04 tonnes per hectare) and MODIS NDVI (R2= 0.60–0.65 tonnes per hectares; RMSE= 2.72–2.81 tonne per hectares; MAE= 1.42-1.55, MAPE= 1.01- 1.02 tonnes per hectares). The Landsat-7 NDVI revealed that neural networks with a deeper network topology (R2= 0.85; RMSE= 1.42 tonnes per hectare; MAE=0.57 tonnes per hectares; MAPE=0.06 tonnes per hectare) outperformed neural networks with a baseline and broader network topologies in terms of performance. In contrast, MODIS-NDVI revealed that the neural network with a wider network topology had the highest overall prediction accuracy and the lowest prediction error (R2= 0.75; RMSE= 2.81 tonnes per hectare; MAE=2.27 tonnes per tonnes; MAPE= 0.13). Because of its higher spatial resolution in comparison to MODIS, landsat-7 NDVI used in neural networks with a deep network topology provided the best model performance. Although the use of NDVI as a single input factor may cause uncertainty in some extents, it is an efficient and reliable method for improving yield estimation with the use of medium-resolution satellites, which has important implications for early warning towards the reduction in yield production.","PeriodicalId":430114,"journal":{"name":"Journal of Advanced Research in Applied Sciences and Engineering Technology","volume":"120 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Applied Sciences and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/araset.45.1.90107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to environmental threats and weather uncertainty concerns, oil palm yield prediction is crucial for sustaining crop production. This can be achieved through machine learning and utilising remotely sensed data to predict crop yield. However, the comparative studies on remotely sensed data in adopting the machine learning models are still limited due to the data accessibility. Therefore, we compare and evaluate the prediction accuracy between different satellites, namely MODIS and Landsat-7, using machine learning algorithms and the topology of deep neural networks. Random forest and stacking outperformed linear regression, ridge regression, and lasso regression for both Landsat-7 NDVI (R2= 0.78–0.80; RMSE=1.00- 1.26 tonnes per hectare; MAE=0.77- 0.79 tonnes per hectares; MAPE=0.03-0.04 tonnes per hectare) and MODIS NDVI (R2= 0.60–0.65 tonnes per hectares; RMSE= 2.72–2.81 tonne per hectares; MAE= 1.42-1.55, MAPE= 1.01- 1.02 tonnes per hectares). The Landsat-7 NDVI revealed that neural networks with a deeper network topology (R2= 0.85; RMSE= 1.42 tonnes per hectare; MAE=0.57 tonnes per hectares; MAPE=0.06 tonnes per hectare) outperformed neural networks with a baseline and broader network topologies in terms of performance. In contrast, MODIS-NDVI revealed that the neural network with a wider network topology had the highest overall prediction accuracy and the lowest prediction error (R2= 0.75; RMSE= 2.81 tonnes per hectare; MAE=2.27 tonnes per tonnes; MAPE= 0.13). Because of its higher spatial resolution in comparison to MODIS, landsat-7 NDVI used in neural networks with a deep network topology provided the best model performance. Although the use of NDVI as a single input factor may cause uncertainty in some extents, it is an efficient and reliable method for improving yield estimation with the use of medium-resolution satellites, which has important implications for early warning towards the reduction in yield production.
利用基于 Landsat 和 MODIS 卫星数据的机器学习方法预测块状油棕榈树产量
由于环境威胁和天气的不确定性,油棕产量预测对于维持作物生产至关重要。这可以通过机器学习和利用遥感数据来预测作物产量。然而,由于数据的可获取性,在采用机器学习模型时对遥感数据的比较研究仍然有限。因此,我们利用机器学习算法和深度神经网络的拓扑结构,对不同卫星(即 MODIS 和 Landsat-7)的预测精度进行了比较和评估。就 Landsat-7 NDVI 而言,随机森林和堆叠的效果优于线性回归、脊回归和套索回归(R2= 0.78-0.80;RMSE=1.00- 1.26 吨/公顷;MAE=0.77- 0.79 吨/公顷;MAPE=0.03-0.04 吨/公顷)和 MODIS NDVI(R2=0.60-0.65 吨/公顷;RMSE=2.72-2.81 吨/公顷;MAE=1.42-1.55,MAPE=1.01- 1.02 吨/公顷)。大地遥感卫星-7 的 NDVI 显示,具有较深网络拓扑结构的神经网络(R2= 0.85;RMSE= 1.42 吨/公顷;MAE=0.57 吨/公顷;MAPE=0.06 吨/公顷)在性能方面优于具有基线和较宽网络拓扑结构的神经网络。相比之下,MODIS-NDVI 表明,具有更宽网络拓扑结构的神经网络具有最高的总体预测精度和最低的预测误差(R2=0.75;RMSE=2.81 吨/公顷;MAE=2.27 吨/公顷;MAPE=0.13)。与 MODIS 相比,landsat-7 NDVI 具有更高的空间分辨率,因此在深度网络拓扑结构的神经网络中使用,可提供最佳的模型性能。虽然使用 NDVI 作为单一输入因子可能会在某些程度上造成不确定性,但它是利用中分辨率卫星提高产量估算的一种高效可靠的方法,对减产预警具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信