{"title":"Multi-Evidence based Fact Verification via A Confidential Graph Neural Network","authors":"Yuqing Lan, Zhenghao Liu, Yu Gu, Xiaoyuan Yi, Xiaohua Li, Liner Yang, Ge Yu","doi":"10.1109/tbdata.2024.3403382","DOIUrl":null,"url":null,"abstract":"Fact verification tasks aim to identify the integrity of textual contents according to the truthful corpus. Existing fact verification models usually build a fully connected reasoning graph, which regards claim-evidence pairs as nodes and connects them with edges. They employ the graph to propagate the semantics of the nodes. Nevertheless, the noisy nodes usually propagate their semantics via the edges of the reasoning graph, which misleads the semantic representations of other nodes and amplifies the noise signals. To mitigate the propagation of noisy semantic information, we introduce a Confidential Graph Attention Network (CO-GAT), which proposes a node masking mechanism for modeling the nodes. Specifically, CO-GAT calculates the node confidence score by estimating the relevance between the claim and evidence pieces. Then, the node masking mechanism uses the node confidence scores to control the noise information flow from the vanilla node to the other graph nodes. CO-GAT achieves a 73.59% FEVER score on the FEVER dataset and shows the generalization ability by broadening the effectiveness to the science-specific domain.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tbdata.2024.3403382","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fact verification tasks aim to identify the integrity of textual contents according to the truthful corpus. Existing fact verification models usually build a fully connected reasoning graph, which regards claim-evidence pairs as nodes and connects them with edges. They employ the graph to propagate the semantics of the nodes. Nevertheless, the noisy nodes usually propagate their semantics via the edges of the reasoning graph, which misleads the semantic representations of other nodes and amplifies the noise signals. To mitigate the propagation of noisy semantic information, we introduce a Confidential Graph Attention Network (CO-GAT), which proposes a node masking mechanism for modeling the nodes. Specifically, CO-GAT calculates the node confidence score by estimating the relevance between the claim and evidence pieces. Then, the node masking mechanism uses the node confidence scores to control the noise information flow from the vanilla node to the other graph nodes. CO-GAT achieves a 73.59% FEVER score on the FEVER dataset and shows the generalization ability by broadening the effectiveness to the science-specific domain.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.