ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI UNTUK MENCIPTAKAN STRATEGI PEMASARAN PADA APOTEK

Feri Sulianta, Eriko Prayogo
{"title":"ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI UNTUK MENCIPTAKAN STRATEGI PEMASARAN PADA APOTEK","authors":"Feri Sulianta, Eriko Prayogo","doi":"10.30587/e-link.v19i1.5951","DOIUrl":null,"url":null,"abstract":"The sales of pharmaceutical products among the public are increasing, especially with the recent pandemic that has led to an increase in drug sales. This has created significant potential for the pharmaceutical industry or drug sales businesses. However, proper marketing plans are required in the pharmaceutical industry to optimize revenue. Analyzing drug sales trends can provide valuable insights for creating excellent marketing plans. To develop a superior marketing plan, an analysis of sales transaction data is necessary with the help of data mining, which is useful for obtaining important information from the dataset being analyzed. The Apriori algorithm is used in this research to examine association rule patterns of drug sales in pharmacies The sales information used as dataset is consisting of 600,000 transactional data collected over six years (2014–2019). This dataset includes the date and time of sales, pharmaceutical drug brands, and other relevant information.","PeriodicalId":421293,"journal":{"name":"E-Link: Jurnal Teknik Elektro dan Informatika","volume":"102 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Link: Jurnal Teknik Elektro dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30587/e-link.v19i1.5951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sales of pharmaceutical products among the public are increasing, especially with the recent pandemic that has led to an increase in drug sales. This has created significant potential for the pharmaceutical industry or drug sales businesses. However, proper marketing plans are required in the pharmaceutical industry to optimize revenue. Analyzing drug sales trends can provide valuable insights for creating excellent marketing plans. To develop a superior marketing plan, an analysis of sales transaction data is necessary with the help of data mining, which is useful for obtaining important information from the dataset being analyzed. The Apriori algorithm is used in this research to examine association rule patterns of drug sales in pharmacies The sales information used as dataset is consisting of 600,000 transactional data collected over six years (2014–2019). This dataset includes the date and time of sales, pharmaceutical drug brands, and other relevant information.
使用 apriori 算法的关联规则创建药店营销策略
药品在公众中的销售量不断增加,特别是最近的大流行病导致药品销售量增加。这为制药业或药品销售业务创造了巨大的潜力。然而,制药业需要适当的营销计划来优化收入。分析药品销售趋势可以为制定出色的营销计划提供宝贵的见解。要制定出色的营销计划,就必须借助数据挖掘对销售交易数据进行分析,数据挖掘有助于从所分析的数据集中获取重要信息。本研究使用 Apriori 算法来研究药店药品销售的关联规则模式。作为数据集的销售信息由六年(2014-2019 年)内收集的 600,000 笔交易数据组成。该数据集包括销售日期和时间、药品品牌和其他相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信