Experimental Investigation of Solid Rocket Scramjet Based on Central Strut

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Jialin Zeng, Guohui Wang, Hui Huang, Jian Fan, Haosu Wang
{"title":"Experimental Investigation of Solid Rocket Scramjet Based on Central Strut","authors":"Jialin Zeng, Guohui Wang, Hui Huang, Jian Fan, Haosu Wang","doi":"10.3390/aerospace11050410","DOIUrl":null,"url":null,"abstract":"Scramjet based on solid propellant has become a potential choice for the development of future hypersonic vehicles. In this paper, a boron-containing solid rocket scramjet based on the central strut injection was proposed, and the ground direct-connect experiment with the equivalence ratios of 0.43 to 2.4 under the flight condition of Mach 6, 25 km was carried out. The pressure and flow rate over time were measured in the experiment. The results show that the engine can realize stable supersonic mode or subsonic mode combustion by changing the gas flow rate. The engine can effectively increase the combustor pressure, reduce the unstable combustion time, and advance the strong combustion position by increasing the gas flow rate. The engine achieved high combustion efficiency when the equivalence ratio was about 1, with a maximum of 88.28%. A numerical simulation analysis was also carried out in this paper. Compared to the experimental results, the pressure error obtained by numerical simulation was less than 4%, and the typical position error was less than 3%, suggesting that the simulation model can be used to predict the behavior of scramjet.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050410","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Scramjet based on solid propellant has become a potential choice for the development of future hypersonic vehicles. In this paper, a boron-containing solid rocket scramjet based on the central strut injection was proposed, and the ground direct-connect experiment with the equivalence ratios of 0.43 to 2.4 under the flight condition of Mach 6, 25 km was carried out. The pressure and flow rate over time were measured in the experiment. The results show that the engine can realize stable supersonic mode or subsonic mode combustion by changing the gas flow rate. The engine can effectively increase the combustor pressure, reduce the unstable combustion time, and advance the strong combustion position by increasing the gas flow rate. The engine achieved high combustion efficiency when the equivalence ratio was about 1, with a maximum of 88.28%. A numerical simulation analysis was also carried out in this paper. Compared to the experimental results, the pressure error obtained by numerical simulation was less than 4%, and the typical position error was less than 3%, suggesting that the simulation model can be used to predict the behavior of scramjet.
基于中央支柱的固体火箭喷流实验研究
基于固体推进剂的扰喷已成为未来高超声速飞行器发展的潜在选择。本文提出了一种基于中心支杆喷射的含硼固体火箭扰流喷射器,并在 6 马赫、25 千米的飞行条件下进行了等效比为 0.43 至 2.4 的地面直联实验。实验中测量了随时间变化的压力和流量。结果表明,通过改变燃气流量,发动机可以实现稳定的超音速或亚音速燃烧。通过增加燃气流量,发动机可以有效地提高燃烧器压力,减少不稳定燃烧时间,并将强燃烧位置提前。当当量比约为 1 时,发动机的燃烧效率很高,最高可达 88.28%。本文还进行了数值模拟分析。与实验结果相比,数值模拟得到的压力误差小于 4%,典型位置误差小于 3%,表明模拟模型可用于预测争气式喷气发动机的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信