Decoding Stocks Patterns Using LSTM

Dr. Madhur Jain, Shilpi Jain, Ankit Gupta
{"title":"Decoding Stocks Patterns Using LSTM","authors":"Dr. Madhur Jain, Shilpi Jain, Ankit Gupta","doi":"10.32628/cseit2410328","DOIUrl":null,"url":null,"abstract":"Decoding stocks is extensively utilized in the financial sector by numerous organizations. It is volatile in nature, so it’s tough to predict the prices of stock. Numerous methodologies exist for tackling this task, including logistic regression, support vector machines (SVM), autoregressive conditional heteroskedasticity (ARCH) models, recurrent neural network (RNN), convolutional neural networks (CNN), backpropagation, Naïve Bayes, among others. Among these, Long Short-Term Memory (LSTM) stands out as particularly adept at handling time series data. The primary aim is to discern prevailing market trends and achieve accurate stock price forecasts. Leveraging LSTM and RNN , we strive for error free stock price predictions, with promising results.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"75 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2410328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decoding stocks is extensively utilized in the financial sector by numerous organizations. It is volatile in nature, so it’s tough to predict the prices of stock. Numerous methodologies exist for tackling this task, including logistic regression, support vector machines (SVM), autoregressive conditional heteroskedasticity (ARCH) models, recurrent neural network (RNN), convolutional neural networks (CNN), backpropagation, Naïve Bayes, among others. Among these, Long Short-Term Memory (LSTM) stands out as particularly adept at handling time series data. The primary aim is to discern prevailing market trends and achieve accurate stock price forecasts. Leveraging LSTM and RNN , we strive for error free stock price predictions, with promising results.
使用 LSTM 解码股票模式
股票解码在金融领域被众多机构广泛使用。股票的性质是波动的,因此很难预测其价格。解决这一问题的方法有很多,包括逻辑回归、支持向量机(SVM)、自回归条件异方差(ARCH)模型、循环神经网络(RNN)、卷积神经网络(CNN)、反向传播、奈夫贝叶斯等。其中,长短期记忆(LSTM)尤其擅长处理时间序列数据。其主要目的是辨别当前的市场趋势,实现准确的股价预测。利用 LSTM 和 RNN,我们努力实现无差错股价预测,并取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信