{"title":"Exploiting Machine Learning Bias: Predicting Medical Denials","authors":"Stephen Russell, Fabio Montes Suros, Ashwin Kumar","doi":"10.1609/aaaiss.v3i1.31181","DOIUrl":null,"url":null,"abstract":"For a large healthcare system, ignoring costs associated with managing the patient encounter denial process (staffing, contracts, etc.), total denial-related amounts can be more than $1B annually in gross charges. Being able to predict a denial before it occurs has the potential for tremendous savings. Using machine learning to predict denial has the potential to allow denial-preventing interventions. However, challenges of data imbalance make creating a single generalized model difficult. We employ two biased models in a hybrid voting scheme to achieve results that exceed the state-of-the art and allow for incremental predictions as the encounter progresses. The model had the added benefit of monitoring the human-driven denial process that affect the underlying distribution, on which the models’ bias is based.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"60 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a large healthcare system, ignoring costs associated with managing the patient encounter denial process (staffing, contracts, etc.), total denial-related amounts can be more than $1B annually in gross charges. Being able to predict a denial before it occurs has the potential for tremendous savings. Using machine learning to predict denial has the potential to allow denial-preventing interventions. However, challenges of data imbalance make creating a single generalized model difficult. We employ two biased models in a hybrid voting scheme to achieve results that exceed the state-of-the art and allow for incremental predictions as the encounter progresses. The model had the added benefit of monitoring the human-driven denial process that affect the underlying distribution, on which the models’ bias is based.