Pavlinka Kokoskarova, Tatjana Ruskovska, Mariola Brycht, S. Skrzypek, Valentin Mirčeski
{"title":"Label-free voltammetric screening of human blood serum","authors":"Pavlinka Kokoskarova, Tatjana Ruskovska, Mariola Brycht, S. Skrzypek, Valentin Mirčeski","doi":"10.20450/mjcce.2024.2859","DOIUrl":null,"url":null,"abstract":"The current study presents a comprehensive voltammetric investigation into the direct analysis of untreated human blood serum in a phosphate buffer at an unmodified, graphite electrode by means of voltammetry. By employing advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode (EPPGE), the basic principles were established for developing a sensitive, fast, simple, and label-free method for the simultaneous screening of uric acid, bilirubin, and albumin analytes that are present in human blood serum and are quite essential for rapid medical diagnostics. The electrochemical protocol utilizes the specific structural patterns of the EPPGE, the inherent redox and adsorption properties of the analysed analytes, and the sensitivity and rapidity of the employed advanced voltammetric technique.\nThe methodology has been successfully applied for quantification of the considered analytes in a series of samples of human blood serum and was compared with the standard methods used in a clinical biochemical laboratory. This novel method represents a significant advancement towards the development of point-of-care devices aimed at swiftly and simultaneously quantifying uric acid, bilirubin, and albumin levels in human serum.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2024.2859","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study presents a comprehensive voltammetric investigation into the direct analysis of untreated human blood serum in a phosphate buffer at an unmodified, graphite electrode by means of voltammetry. By employing advanced square-wave voltammetry at an edge plane pyrolytic graphite electrode (EPPGE), the basic principles were established for developing a sensitive, fast, simple, and label-free method for the simultaneous screening of uric acid, bilirubin, and albumin analytes that are present in human blood serum and are quite essential for rapid medical diagnostics. The electrochemical protocol utilizes the specific structural patterns of the EPPGE, the inherent redox and adsorption properties of the analysed analytes, and the sensitivity and rapidity of the employed advanced voltammetric technique.
The methodology has been successfully applied for quantification of the considered analytes in a series of samples of human blood serum and was compared with the standard methods used in a clinical biochemical laboratory. This novel method represents a significant advancement towards the development of point-of-care devices aimed at swiftly and simultaneously quantifying uric acid, bilirubin, and albumin levels in human serum.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.