Advanced Image Analysis and Machine Learning Models for Accurate Cover Factor and Porosity Prediction in Knitted Fabrics: Tailored Applications in Sportswear, Swimwear, and Casual Wear
T. Rolich, D. Domović, G. Čubrić, Ivana Salopek Čubrić
{"title":"Advanced Image Analysis and Machine Learning Models for Accurate Cover Factor and Porosity Prediction in Knitted Fabrics: Tailored Applications in Sportswear, Swimwear, and Casual Wear","authors":"T. Rolich, D. Domović, G. Čubrić, Ivana Salopek Čubrić","doi":"10.3390/fib12050045","DOIUrl":null,"url":null,"abstract":"This paper presents a study focused on developing robust algorithms for cover factor and porosity calculation through digital image analysis. Computational models based on machine learning for efficient cover factor prediction based on fabric parameters have also been developed. Five algorithms were devised and implemented in MATLAB: the single threshold algorithm (ST); multiple linear threshold algorithms, ML-1 and ML-2; and algorithms with multiple thresholds obtained by the Otzu method, MT-1 and MT-2. These algorithms were applied to knitted fabrics used for football, swimming, and leisure. Algorithms ML-1 and MT-1, employing multiple thresholds, outperformed the single threshold algorithm. The ML-1 variant yielded the highest average porosity value at 95.24%, indicating the importance of adaptable thresholding in image analysis. Comparative analysis revealed that algorithm variants ML-2 and MT-2 obtain lower cover factors compared to ML-1 and MT-1 but can detect potential void areas in fabrics with higher reliability. Algorithm MT-1 proved to be the most sensitive when it came to distinguishing between different fabric samples. Computational models that were developed based on random tree, random forest, and SMOreg machine learning algorithms predicted cover factor based on fabric parameters with up to 95% accuracy.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib12050045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study focused on developing robust algorithms for cover factor and porosity calculation through digital image analysis. Computational models based on machine learning for efficient cover factor prediction based on fabric parameters have also been developed. Five algorithms were devised and implemented in MATLAB: the single threshold algorithm (ST); multiple linear threshold algorithms, ML-1 and ML-2; and algorithms with multiple thresholds obtained by the Otzu method, MT-1 and MT-2. These algorithms were applied to knitted fabrics used for football, swimming, and leisure. Algorithms ML-1 and MT-1, employing multiple thresholds, outperformed the single threshold algorithm. The ML-1 variant yielded the highest average porosity value at 95.24%, indicating the importance of adaptable thresholding in image analysis. Comparative analysis revealed that algorithm variants ML-2 and MT-2 obtain lower cover factors compared to ML-1 and MT-1 but can detect potential void areas in fabrics with higher reliability. Algorithm MT-1 proved to be the most sensitive when it came to distinguishing between different fabric samples. Computational models that were developed based on random tree, random forest, and SMOreg machine learning algorithms predicted cover factor based on fabric parameters with up to 95% accuracy.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins