Intermittent water stress favors microbial traits that better help wheat under drought

IF 5.1 Q1 ECOLOGY
Ruth Lydia Schmidt, H. Azarbad, Luke Bainard, Julien Tremblay, É. Yergeau
{"title":"Intermittent water stress favors microbial traits that better help wheat under drought","authors":"Ruth Lydia Schmidt, H. Azarbad, Luke Bainard, Julien Tremblay, É. Yergeau","doi":"10.1093/ismeco/ycae074","DOIUrl":null,"url":null,"abstract":"\n Microorganisms can improve plant resistance to drought through various mechanisms such as the production of plant hormones, osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or intermittent water stress history for almost forty years. We grew wheat in these soils and subjected it to a water stress, after which we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in the soil with an intermittent water stress history maintained a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in the metagenome of the soil with an intermittent water stress history as compared to the soil with a continuous water stress history. We suggest that an intermittent water stress history selects traits beneficial for life under water stress.","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms can improve plant resistance to drought through various mechanisms such as the production of plant hormones, osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or intermittent water stress history for almost forty years. We grew wheat in these soils and subjected it to a water stress, after which we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in the soil with an intermittent water stress history maintained a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in the metagenome of the soil with an intermittent water stress history as compared to the soil with a continuous water stress history. We suggest that an intermittent water stress history selects traits beneficial for life under water stress.
间歇性水分胁迫有利于微生物性状,从而更好地帮助小麦抗旱
微生物可通过各种机制提高植物的抗旱能力,如产生植物激素、渗透溶解物、抗氧化剂和外多糖。然而,目前还不清楚之前的水胁迫如何影响土壤微生物群落帮助植物抗旱的功能。我们比较了两种土壤,它们在将近四十年的时间里持续或间歇地遭受过水胁迫。我们在这些土壤中种植了小麦,并对其施加了水胁迫,之后我们收集了根圈土壤,并对其元基因组进行了枪式测序。在有间歇性水胁迫历史的土壤中生长的小麦在受到水胁迫时保持了较高的生物量。与持续水胁迫土壤相比,间歇水胁迫土壤元基因组中与吲哚乙酸和渗透溶质产生有关的基因更为丰富。我们认为,间歇性水胁迫选择了有利于在水胁迫下生活的性状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信