Alienation of the quadratic, exponential and d’Alembert functional equations

IF 0.9 3区 数学 Q2 MATHEMATICS
Marcin Adam
{"title":"Alienation of the quadratic, exponential and d’Alembert functional equations","authors":"Marcin Adam","doi":"10.1007/s00010-024-01084-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((S,+,0)\\)</span> be a commutative monoid, <span>\\(\\sigma :S\\rightarrow S\\)</span> be an endomorphism with <span>\\(\\sigma ^2=id\\)</span> and let <i>K</i> be a field of characteristic different from 2. We study the solutions <span>\\(f,g,h:S\\rightarrow K\\)</span> of the Pexider type functional equation </p><div><div><span>$$\\begin{aligned} f(x+y)+f(x+\\sigma y)+g(x+y)=2f(x)+2f(y)+g(x)g(y) \\end{aligned}$$</span></div></div><p>resulting from summing up the well known quadratic and exponential functional equations side by side. We show that under some additional assumptions the above equation forces <i>f</i> and <i>g</i> to split back into the system of two equations </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll}f(x+y)+f(x+\\sigma y)=2f(x)+2f(y)\\\\ g(x+y)=g(x)g(y)\\end{array}\\right. \\end{aligned}$$</span></div></div><p>for all <span>\\(x,y\\in S\\)</span> (alienation phenomenon). We also consider an analogous problem for the quadratic and d’Alembert functional equations as well as for the quadratic, exponential and d’Alembert functional equations.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 2","pages":"411 - 432"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01084-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01084-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((S,+,0)\) be a commutative monoid, \(\sigma :S\rightarrow S\) be an endomorphism with \(\sigma ^2=id\) and let K be a field of characteristic different from 2. We study the solutions \(f,g,h:S\rightarrow K\) of the Pexider type functional equation

$$\begin{aligned} f(x+y)+f(x+\sigma y)+g(x+y)=2f(x)+2f(y)+g(x)g(y) \end{aligned}$$

resulting from summing up the well known quadratic and exponential functional equations side by side. We show that under some additional assumptions the above equation forces f and g to split back into the system of two equations

$$\begin{aligned} \left\{ \begin{array}{ll}f(x+y)+f(x+\sigma y)=2f(x)+2f(y)\\ g(x+y)=g(x)g(y)\end{array}\right. \end{aligned}$$

for all \(x,y\in S\) (alienation phenomenon). We also consider an analogous problem for the quadratic and d’Alembert functional equations as well as for the quadratic, exponential and d’Alembert functional equations.

二次函数方程、指数函数方程和达朗贝尔函数方程的异化
设\((S,+,0)\)为可交换单群,\(\sigma :S\rightarrow S\)为\(\sigma ^2=id\)的自同态,设K为不同于2的特征域。我们研究了Pexider型泛函方程$$\begin{aligned} f(x+y)+f(x+\sigma y)+g(x+y)=2f(x)+2f(y)+g(x)g(y) \end{aligned}$$的解\(f,g,h:S\rightarrow K\),它是由众所周知的二次型和指数型泛函方程并列求和而成的。我们表明,在一些额外的假设下,上述方程迫使f和g分裂回两个方程的系统$$\begin{aligned} \left\{ \begin{array}{ll}f(x+y)+f(x+\sigma y)=2f(x)+2f(y)\\ g(x+y)=g(x)g(y)\end{array}\right. \end{aligned}$$对于所有\(x,y\in S\)(异化现象)。我们还考虑了二次型和d 'Alembert泛函方程以及二次型、指数型和d 'Alembert泛函方程的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信