Tommaso Ortalli, Andrea Di Martino, Michela Longo, Dario Zaninelli
{"title":"Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach","authors":"Tommaso Ortalli, Andrea Di Martino, Michela Longo, Dario Zaninelli","doi":"10.3390/logistics8020055","DOIUrl":null,"url":null,"abstract":"Background: The ongoing technical innovation is fully involving transportation sector, converting the usual mass-transit system toward a sustainable mobility. Make-or-buy decision are usually adopted to assess different solutions in terms of costs-benefits to put in place strategic choices regarding in-house production or from an external supplier. This can also be reflected on maintenance operations, thus replicating a similar approach to transport companies involved. Method: A decision-making model by means of a multi-criteria analysis can lead make-or-buy choices adapted to maintenance. A brief introduction into the actual mobility context is provided, evaluating global and national trends with respect to the mobility solutions offered. Then, a focus is set on maintenance approaches in mobility sector and the need of a make-or-buy decision process is considered. The decision-making path is developed through a multi-criteria framework based on eigenvector weighing assessment, where different Key Performance Indicators (KPIs) are identified and exploited to assess the maintenance approach at stake. Results: A comparison among different scenarios considered helped in identify the solution offered to the transport operator. In particular, for the case study of interest a −35% decrease in maintenance specific cost and −44% in cost variability were found. Reliability of the fleet was kept at an acceptable level compared to the reference in-house maintenance (≥90%) while an increase in the Mean Time Between Failure was observed. Conclusions: For the purposes of a small company, the method can address the choice of outsourcing maintenance as the best. Finally, a general trend is then extrapolated from the analysis performed, in order to constitute a decision guideline. The research can benefit from further analysis to test and validate that the selected approach is effective from the perspective of transport operator.","PeriodicalId":507203,"journal":{"name":"Logistics","volume":"52 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/logistics8020055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The ongoing technical innovation is fully involving transportation sector, converting the usual mass-transit system toward a sustainable mobility. Make-or-buy decision are usually adopted to assess different solutions in terms of costs-benefits to put in place strategic choices regarding in-house production or from an external supplier. This can also be reflected on maintenance operations, thus replicating a similar approach to transport companies involved. Method: A decision-making model by means of a multi-criteria analysis can lead make-or-buy choices adapted to maintenance. A brief introduction into the actual mobility context is provided, evaluating global and national trends with respect to the mobility solutions offered. Then, a focus is set on maintenance approaches in mobility sector and the need of a make-or-buy decision process is considered. The decision-making path is developed through a multi-criteria framework based on eigenvector weighing assessment, where different Key Performance Indicators (KPIs) are identified and exploited to assess the maintenance approach at stake. Results: A comparison among different scenarios considered helped in identify the solution offered to the transport operator. In particular, for the case study of interest a −35% decrease in maintenance specific cost and −44% in cost variability were found. Reliability of the fleet was kept at an acceptable level compared to the reference in-house maintenance (≥90%) while an increase in the Mean Time Between Failure was observed. Conclusions: For the purposes of a small company, the method can address the choice of outsourcing maintenance as the best. Finally, a general trend is then extrapolated from the analysis performed, in order to constitute a decision guideline. The research can benefit from further analysis to test and validate that the selected approach is effective from the perspective of transport operator.