{"title":"Global System Errors to Simultaneously Improve the Identification of Subsystems with Mixed Data Gaussian Process Regression","authors":"Cameron J LaMack, Eric M. Schearer","doi":"10.1088/2632-2153/ad4e05","DOIUrl":null,"url":null,"abstract":"\n This paper explores the use of Gaussian Process Regression (GPR) for system iden- tification in control engineering. It introduces two novel approaches that utilize the data from a measured global system error. The paper demonstrates these approaches by identifying a simulated system with three subsystems, a one degree of freedom mass with two antagonist muscles. The first approach uses this whole-system error data alone, achieving accuracy on the same order of magnitude as subsystem-specific data (9.28 ± 0.87 N vs. 6.96 ± 0.32 N of total model errors). This is significant, as it shows that the same data set can be used to identify unique subsystems, as op- posed to requiring a set of data descriptive of only a single subsystem. The second approach demonstrated in this paper mixes traditional subsystem-specific data with the whole system error data, achieving up to 98.71% model improvement.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"24 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4e05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the use of Gaussian Process Regression (GPR) for system iden- tification in control engineering. It introduces two novel approaches that utilize the data from a measured global system error. The paper demonstrates these approaches by identifying a simulated system with three subsystems, a one degree of freedom mass with two antagonist muscles. The first approach uses this whole-system error data alone, achieving accuracy on the same order of magnitude as subsystem-specific data (9.28 ± 0.87 N vs. 6.96 ± 0.32 N of total model errors). This is significant, as it shows that the same data set can be used to identify unique subsystems, as op- posed to requiring a set of data descriptive of only a single subsystem. The second approach demonstrated in this paper mixes traditional subsystem-specific data with the whole system error data, achieving up to 98.71% model improvement.