Recent Developments in General Quasi Variational Inequalities

IF 0.7 Q2 MATHEMATICS
A. A. Alshejari, M. A. Noor, K. I. Noor
{"title":"Recent Developments in General Quasi Variational Inequalities","authors":"A. A. Alshejari, M. A. Noor, K. I. Noor","doi":"10.28924/2291-8639-22-2024-84","DOIUrl":null,"url":null,"abstract":"In this paper, we present a number of new and known numerical techniques for solving general quasi variational inequalities, introduced by Noor [34] in 1988, using various techniques including projection, Wiener-Hopf equations, auxiliary principle, dynamical systems coupled with finite difference approach and sensitivity analysis. Convergence analysis of these methods is investigated under suitable conditions. Sensitivity analysis is also investigated. Some special cases are discussed as applications of the main results. Several open problems are suggested for future research.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a number of new and known numerical techniques for solving general quasi variational inequalities, introduced by Noor [34] in 1988, using various techniques including projection, Wiener-Hopf equations, auxiliary principle, dynamical systems coupled with finite difference approach and sensitivity analysis. Convergence analysis of these methods is investigated under suitable conditions. Sensitivity analysis is also investigated. Some special cases are discussed as applications of the main results. Several open problems are suggested for future research.
一般准变量不等式的最新发展
在本文中,我们介绍了一些用于求解一般准变分不等式的新的和已知的数值技术,这些技术由 Noor [34] 在 1988 年引入,使用了各种技术,包括投影、维纳-霍普夫方程、辅助原理、动态系统与有限差分方法和灵敏度分析。研究了这些方法在适当条件下的收敛分析。还研究了灵敏度分析。作为主要结果的应用,还讨论了一些特殊情况。还为今后的研究提出了几个有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信