{"title":"Toward Autonomy: Metacognitive Learning for Enhanced AI Performance","authors":"Brendan Conway-Smith, Robert L. West","doi":"10.1609/aaaiss.v3i1.31270","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) lack robust metacognitive learning abilities and depend on human-provided algorithms and prompts for learning and output generation. Metacognition involves processes that monitor and enhance cognition. Learning how to learn - metacognitive learning - is crucial for adapting and optimizing learning strategies over time. Although LLMs possess limited metacognitive abilities, they cannot autonomously refine or optimize these strategies. Humans possess innate mechanisms for metacognitive learning that enable at least two unique abilities: discerning which metacognitive strategies are best and automatizing learning strategies. These processes have been effectively modeled in the ACT-R cognitive architecture, providing insights on a path toward greater learning autonomy in AI. Incorporating human-like metacognitive learning abilities into AI could potentially lead to the development of more autonomous and versatile learning mechanisms, as well as improved problem-solving capabilities and performance across diverse tasks.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"35 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Large Language Models (LLMs) lack robust metacognitive learning abilities and depend on human-provided algorithms and prompts for learning and output generation. Metacognition involves processes that monitor and enhance cognition. Learning how to learn - metacognitive learning - is crucial for adapting and optimizing learning strategies over time. Although LLMs possess limited metacognitive abilities, they cannot autonomously refine or optimize these strategies. Humans possess innate mechanisms for metacognitive learning that enable at least two unique abilities: discerning which metacognitive strategies are best and automatizing learning strategies. These processes have been effectively modeled in the ACT-R cognitive architecture, providing insights on a path toward greater learning autonomy in AI. Incorporating human-like metacognitive learning abilities into AI could potentially lead to the development of more autonomous and versatile learning mechanisms, as well as improved problem-solving capabilities and performance across diverse tasks.